APLIKASI STATISTIK DENGAN SPSS

Salah satu ciri penelitian kuantitatif adalah menggunakan statistik. Kegunaan statistik dalam penelitian bermacam-macam, yaitu sebagai alat untuk penentuan sampel, pengujian validitas dan reliabilitas instrument, penyajian data, dan analisis data. Analisis data lebih difokuskan untuk menjawab rumusan masalah dan menguji hipotesis penelitian yang diajukan. Jenis data dalam penelitian meliputi data nominal (diskrit), ordinal, interval dan ratio. Selanjutnya bentuk hipotesis penelitian adalah deskriptif (hipotesis untuk satu variable atau lebih secara mandiri), komparatif (perbandingan dua sampel maupun k sampel) dan asosiatif (hubungan antara dua variabel atau lebih). Dalam hipotesis komparatif terdapat sampel yang berkorelasi dan sampel independent. Setelah jenis data dan hipotesis dapat dirumuskan, maka tinggal menentukan teknik statistik yang digunakan. Statistik digunakan meliputi statistik Parametris dan nonparametris. Statistik parametris digunakan untuk menganalisis data sampel besar, data berdistribusi normal yang berbentuk interval dan ratio, sedangkan Nonparametris digunakan untuk menganalisis data sampel kecil, tidak harus berdistribusi normal dan data berbentuk nominal dan ordinal. Dengan adanya computer, maka cara-cara penvajian data dan perhitungan dalam analisis akan lebih mudah dilakukan, bisa menggunakan program Excel atau SPSS.

Buku ini kami tujukan untuk para mahasiswa yang sedang mengambil mata kuliah statistik dan penggunaan alat analisis dalam penelitian bidang ekonomi. Untuk itu, dalam buku ini kami mencoba menjelaskan berbagai materi, kajian dan topik-topik yang dibahas dalam statistik deskriptif, statistik inferen dan aplikasinya dalam penelitian dengan bantuan program SPSS. Sehingga dengan demikian buku ini akan membantu mereka untuk mendapat- kan kemampuan dalam menganalisis data.

PT MAFY MEDIA LITERASI INDONESIA ANGGOTA IKAPI 04/J/SBA/2023 Email : penerbitmafy@gmail.com Website : penerbitmafy.com FB : Penerbit Mafy

APLIKASI STATISTIK DENGAN SPSS

Sanksi Pelanggaran Pasal 113 Undang-Undang No. 28 Tahun 2014 Tentang Hak Cipta

- 1. Setiap Orang yang dengan tanpa hak melakukan pelanggaran hak ekonomi sebagaimana dimaksud dalam Pasal 9 ayat (1) huruf i untuk Penggunaan Secara Komersial dipidana dengan pidana penjara paling lama 1 (satu) tahun dan/atau pidana denda paling banyak Rp 100.000.000 (seratus juta rupiah).
- Setiap Orang yang dengan tanpa hak dan/atau tanpa izin Pencipta atau pemegang Hak Cipta melakukan pelanggaran hak ekonomi Pencipta sebagaimana dimaksud dalam Pasal 9 ayat (1) huruf c, huruf d, huruf f, dan/atau huruf h untuk Penggunaan Secara Komersial dipidana dengan pidana penjara paling lama 3 (tiga) tahun dan/atau pidana denda paling banyak Rp 500.000.000,00 (lima ratus juta rupiah).
- 3. Setiap Orang yang dengan tanpa hak dan/atau tanpa izin Pencipta atau pemegang Hak Cipta melakukan pelanggaran hak ekonomi Pencipta sebagaimana dimaksud dalam Pasal 9 ayat (1) huruf a, huruf b, huruf e, dan/atau huruf g untuk Penggunaan Secara Komersial dipidana dengan pidana penjara paling lama 4 (empat) tahun dan/atau pidana denda paling banyak Rp 1.000.000.000,000 (satu miliar rupiah).
- Setiap Orang yang memenuhi unsur sebagaimana dimaksud pada ayat (3) yang dilakukan dalam bentuk pembajakan, dipidana dengan pidana penjara paling lama 10 (sepuluh) tahun dan/atau pidana denda paling banyak Rp 4.000.000.000,000 (empat miliar rupiah).

APLIKASI STATISTIK DENGAN SPSS

AGUS TRI BASUKI

APLIKASI STATISTIK DENGAN SPSS

Penulis:

Agus Tri Basuki

Tata Letak: Mafy Media

Desainer: Mafy Media

Sumber Gambar Cover:

www.freepik.com

Ukuran:

iv, 110 hlm, 15,5 cm x 23 cm

ISBN: 978-623-8606-45-0

Cetakan Pertama: April 2024

Hak Cipta Dilindungi oleh Undang-undang. Dilarang menerjemah kan, memfotokopi, atau memperbanyak sebagian atau seluruh isi buku ini tanpa izin tertulis dari Penerbit.

PENERBIT PT MAFY MEDIA LITERASI INDONESIA ANGGOTA IKAPI 041/SBA/2023

Kota Solok, Sumatera Barat, Kode Pos 27312 Kontak: 081374311814 Website: www.penerbitmafy.com E-mail: penerbitmafy@gmail.com egala puji bagi Allah yang telah memberikan kami kemudahan sehingga dapat menyelesaikan buku yang berjudul APLIKASI STATISTIK DENGAN SPSS. Tanpa pertolongan-Nya mungkin penulis tidak akan sanggup menyelesaikan buku ini dengan baik. Shalawat dan salam semoga terlimpah curahkan kepada baginda tercinta nabi kita yakni Nabi Muhammad SAW.

Salah satu ciri penelitian kuantitatif adalah menggunakan statistik. Kegunaan statistik dalam penelitian bermacam-macam, yaitu sebagai alat untuk penentuan sampel, pengujian validitas dan reliabilitas instrument, penyajian data, dan analisis data. Analisis data lebih difokuskan untuk menjawab rumusan masalah dan menguji hipotesis penelitian yang diajukan. Jenis data dalam penelitian meliputi data nominal (diskrit), ordinal, interval dan ratio. Selanjutnya bentuk hipotesis penelitian adalah deskriptif (hipotesis untuk satu variable atau lebih secara mandiri), komparatif (perbandingan dua sampel maupun k sampel) dan asosiatif (hubungan antara dua variabel atau lebih). Dalam hipotesis komparatif terdapat sampel yang berkorelasi dan sampel independent. Setelah jenis data dan hipotesis dapat dirumuskan, maka tinggal menentukan teknik statistik yang digunakan. Statistik digunakan meliputi statistik Parametris dan nonparametris. Statistik parametris digunakan untuk menganalisis data sampel besar, data berdistribusi normal yang berbentuk interval dan ratio, sedangkan Nonparametris digunakan untuk menganalisis data sampel kecil, tidak harus berdistribusi normal dan data berbentuk nominal dan ordinal. Dengan adanya computer, maka caracara penyajian data dan perhitungan dalam analisis akan lebih mudah dilakukan, bisa menggunakan program Excel atau SPSS.

Buku ini kami tujukan untuk para mahasiswa yang sedang mengambil mata kuliah statistik dan penggunaan alat analisis dalam penelitian bidang ekonomi. Untuk itu, dalam buku ini kami mencoba menjelaskan berbagai materi, kajian dan topik-topik yang dibahas dalam statistik deskriptif, statistik inferen dan aplikasinya dalam penelitian dengan bantuan program SPSS. Sehingga dengan demikian buku ini akan membantu mereka untuk mendapatkan kemampuan dalam menganalisis data.

Semoga buku ini dapat memberikan pengetahuan yang lebih luas kepada pembaca. Walaupun buku ini memiliki kelebihan dan kekurangan. Penulis membutuhkan kritik dan saran dari pembaca yang membangun. Terima kasih.

> Yogyakarta, April 2024 Agus Tri Basuki

Daftar Isi.

KATA PENGANTAR	i
DAFTAR ISI	iii
Bab 1. STATISTIK DESKRIPTIF	1
BAB 2. UJI T SATU SAMPEL	13
BAB 3. UJI T SAMPEL BERPASANGAN	19
BAB 4. ANALISIS VARIANS	25
BAB 5. UJI VALIDATAS DAN REALIBILITAS	63
BAB 6. NORMALITAS DAN OUTLIER	75
BAB 7. ANALISIS REGRESI	85
BAB 8. UJI ASUMSI KLASIK	99
DAFTAR PUSTAKA	109
PROFIL PENULIS	110

BAB 1. STATISTIK DESKRIPTIF

PADA Bab ini, akan dipelajari bagaimana menggambarkan/memaparkan suatu data dalam bentuk grafik maupun tabel.

Berikut adalah data mengenai Indeks Prestasi mahasiswa dari Fakultas Ekonomi, Fisipol dan Hukum sebagai berikut :

Fakultas	IPK	Fakultas	IPK	Fakultas	IPK
Ekonomi	3,3	Hukum	3,25	Ekonomi	3,3
Ekonomi	2,9	Hukum	3,25	Ekonomi	2,9
Ekonomi	3,4	Ekonomi	2,75	Ekonomi	3,1
Fisipol	3,8	Fisipol	2,5	Fisipol	3,1
Fisipol	2,75	Fisipol	2,5	Hukum	3,1
Ekonomi	3,25	Fisipol	3,25	Hukum	3,25
Fisipol	3,7	Hukum	3,85	Hukum	3,7
Hukum	3,8	Hukum	3,9	Fisipol	3,8
Ekonomi	3,5	Hukum	3,5	Fisipol	3,5
Fisipol	2,9	Ekonomi	2,9	Hukum	2,9

Tabel 1.1 Data IPK Mahasiswa

Kasus di atas akan dibuat dalam tabel frekuensi, baik berdasarkan Indeks Prestasi Mahasiswa maupun berdasarkan asal fakultas.

1. Input Data

Menampilkan tampilan **VARIABLE VIEW** untuk memasukkan identitas variabel data sesuai dengan cara input masing-masing atribut pada pembahasan sebelumnya. Sehingga akan menjadi tampilan **Variabel View** seperti pada (Gambar 1.1) dan Data View seperti pada (Gambar 1.2).

	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Ĩ
1	Fakultas	String	8	0	Asal Fakultas	{1, Ekonomi}	None	8	Left	Ī
2	IPK	Numeric	8	2	Skor IPK	None	None	8	Right	1
3										[
4										Γ

	Fakultas	IPK			
1	Ekonomi	3,30			
2	Ekonomi	2,90			
3	Ekonomi	3,40			
4	Fisipol	3,80			
5	Fisipol	2,75			
6	Ekonomi	3,25			
7	Fisipol	3,70			
8	Hukum	3,80			
9	Ekonomi	3,50			
10	Fisipol	2,90			
11	Hukum	3,25			
12	Hukum	3,25			
13	Ekonomi	2,75			
14	Fisipol	2,50			
15	Fisipol	2,50			
16	Fisipol	3,25			
▲ ► \ Data View \ Variable View /					

Gambar 1.2

Note: Fakultas bertipe data string yang diubah menjadi numerik dengan pemberian **Value**.

2. Statistik Deskriptif untuk IPK

Oleh karena variabel **IPK** termasuk data kuantitatif, maka akan dibuat tabel frekuensi serta deskriptif statistik (meliputi Mean, Standart Deviasi, Range dan lainnya) untuk variabel tersebut. Selain itu akan dilengkapi dengan visualisasi data berupa Chart yang sesuai untuk data kuantitatif, yaitu Histogram atau Bar Chart.

 Dari menu utama SPSS, pilih menu Analyze, kemudian pilih submenu Descriptive Statistics → Descriptives, Maka akan keluar tampilan seperti Gambar 1.3.

Descriptives			x
	Þ	Vanable(s):	OK Poste Reset Cancel Help
Save standardized value	e as varia	bles	Options

Gambar 1.3 Descriptives

- Masukkan variabel **skor IPK** ke dalam kolom **Variable(s)**.
- Pilih Options maka akan tampil pada layar seperti Gambar 1.4. Dialog Box tersebut adalah untuk menampilkan karakteristik data apa saja yang ingin kita tampilkan. Beri tanda Cek List pada Mean, Std deviation, Variance, Range, Minimum, dan Maximum. Abaikan yang lain. Kemudian klik Continue untuk kembali pada Dialog Box Descriptives, kemudian pilih OK.

Descriptives: Option	ns	×				
Mean	Sum Sum	Continue				
Std. deviation	📝 Minimum	Cancel Help				
Vanance	S.E. mean					
Distribution						
V Kurtosis	Skewness					
Display Order						
Variable list						
Alphabetic						
Ascending mean						
Descending means	Descending means					

Gambar 1.4 Descriptives Options

• Output yang muncul adalah seperti pada Gambar 1.5.

	Ν	Range	Minimum	Maximum	Mean	Std.	Variance	Skew	ness	Kurto	osis
	Statistic	Std. Error	Statistic	Std. Error							
Skor IPK	30	1,40	2,50	3,90	3,2533	,39891	,159	-,083	,427	-,803	,833
Valid N (listwise)	30										

Descriptive Statistics

Gambar 1.5 Descriptive Statistics

Analisis:

Berdasarkan Gambar 1.5 didapatkan beberapa karakteristik data yaitu :

N = 30	Banyaknya data yang diolah adalah 30
Mean (Rata-rata) = 3,25	artinya besarnya IPK rata-rata berkisar
	diantara 3,25
Minimum = 2,5	Nilai Minimum IPK dari 30 mahasiswa
	tersebut adalah 2,5
Maximum = 3,9	Nilai Maksimum skor IPK dari 30 mahasiswa
	tersebut adalah 3,9
Range = 1,4	Merupakan selisih nilai Minimum dan
	Maksimum yaitu 3,90 – 2,50= 1,4
Variance = 0,159	Berkaitan erat dengan variasi data. Semakin
	besar nilai variance, maka berarti variasi data
	semakin tinggi
Standard Deviation = 0,398	Merupakan akar kuadrat dari Variance

Selain masih berkaitan dengan dengan variasi data, Penggunaan standard deviasi untuk memperkirakan dispersi rata-rata populasi (simpangan data). Untuk itu, dengan standard deviasi tertentu dan pada tingkat kepercayaan 95% (SPSS sebagian besar menggunakan angka ini sebagai standar), maka rata-rata tinggi badan populasi diperkirakan antara:

Rata-rata ± 2 Standart Deviasi

NB : Angka 2 digunakan, karena tingkat kepercayaan 95%.

Maka : 3,25 ± (2 x 0,398)

: 2,45 sampai 4,0.

Perhatikan kedua batas angka yang berbeda tipis dengan nilai minimum dan maksimum. Hal ini membuktikan sebaran data adalah baik.

3. Tabel Frekuensi Data Indeks Prestasi

Selain dengan menggunakan menu **Descriptives**, informasi mengenai karakteristik data akan lebih tereksplorasi dengan menggunakan tabel frekuensi dan penyajian secara visual melalui grafik yang sesuai. Langkah-langkahnya adalah:

• Pilih menu **Analyze → Descriptive Statistics → Frequencies**, sehingga akan muncul Dialog Box sesuai Gambar 1.6

Frequencies			×
🛃 Asal Fakultas (Fakulta:	•	Variable(s):	OK Paste Reset Cancel Help
Display frequency tables			
	Statistics	Charts	Format

Gambar 1.6 descriptive : Frequencies Skor IPK Mahasiswa

- Masukkan variabel **Skor IPK** pada kolom **Variable(s)**. Un Chek **Display Frequency Tables**.
- Pilih Statistics sehingga muncul Dialog Box Gambar 1.7. Beri tanda Cek List pada Quartiles, Percentiles (isi dengan nilai 10 dan 90 sebagai contoh), Mean, Median, Mode, Sttandard deviation, Variance, Range, Minimum, Maximum dan SE Mean. Abaikan yang lain, lalu pilih Continue untuk kembali ke Dialog Box Frequencies → OK

Frequencies: Statistics	×
Percentile Values Image: Percentile Values Image: Cut points for: Image: Change Remove	Central Tendency Mean Median Mode Sum Values are group midpoints
Dispersion Std. deviation Variance Range S.E. mean	Distribution Skewness Kurtosis

Gambar 1.7 Statistics

• Output yang akan muncul adalah sesuai **Gambar 1.8**.

Skor IPK		
Ν	Valid	30
	Missing	0
Mean		3,2533
Std. Error of Mea	n	,07283
Median		3,2500
Mode		2,90 ^a
Std. Deviation		,39891
Variance		,159
Range		1,40
Minimum		2,50
Maximum		3,90
Percentiles	10	2,7500
	25	2,9000
	50	3,2500
	75	3,5500
	90	3,8000

Statistics

a. Multiple modes exist. The smallest value is shown

Gambar 1.8 Statistics

Analisis :

- Mean, Std Deviation, Variance, Range, Minimum dan Maximum telah • dijelaskan sebelumnya.
- **Std Error of Mean** = 0,07283, digunakan untuk memperkirakan Rata-rata • populasi berdasarkan 30 data sampel yang diolah. Rata-Rata Populasi = Mean ± 2 Std Error of Mean. Schingga berdasarkan data, didapatkan Rata-rata Populasi = $3,25 \pm 2$ (0,07283) Maka Rata-rata Populasi bekisar antara 3,1-3,4
- **Median = 3.25**, merupakan nilai tengah data yang telah diurutkan (baik • dari kecil ke besar maupun dari besar ke kecil). Sehingga Median = 3.25 berarti bahwa 50% berada di bawah (kurang dari) 3,25 dan 50% lainnya berada di atas (lebih dari) 3,25.
- Percentiles 10, 25, 50, 75, dan 90 merupakan batasan-batasan yang menunjukkan proporsi sebaran data. **Percentile 10 = 2,75,** artinya 10% data (10% X 30 = 3) atau ada 3 data terkecil bernilai kurang dari 2,75 **Percentile 25 = 2,9,** artinya 25% data (25% X 30 = 8) atau ada 8 data terkecil bernilai kurang dari 2.9..

Demikian juga seterusnya untuk percentile 50, 75 dan 90.

4. Tabel Frekuensi Data Skor IPK

Langkah pembuatan Tabel Frekuensi pada Data Skor IPK Pilih Menu **analyze → Descriptive Statistics → Frequencies**, sehingga muncul **Dialog Box** sesuai **Gambar 1.9**.

E Frequencies			X
윩 Asal Fakultas (Fakulta:	•	Variable(s):	OK Paste Reset Cancel Help
Display frequency tables			
	Statistics	s Charts	Format

Gambar 1.9 Frequencies Data Mahasiswa Berdasarkan fakultas

- Masukkan Variabel **Skor IPK** pada kolom **Variable(s)**, Check List **Display Frequency Tables**.
- Pilih **Statistics**, Check semua item. **Continue**.

Frequencies: Statistics	— ×
Percentile Values Image: Change Remove 10 equal groups 10 90 90	Central Tendency Mean Median Mode Sum Values are group midpoints
Dispersion Image: Std. deviation Image: Minimum Image: Image: Image: Image: Image Image: Image: Image: Image	Distribution Skewness Kurtosis

Gambar 1.10 Frequencies Statistics Data IPK Berdasarkan Fakultas

• Pilih Charts, kemudian pilih Pie Chart → Continue → OK

Gambar 1.11 Frequencies : Charts untuk Skor IPK

• Output yang muncul adalah sesuai **Gambar 1.12**, **Gambar 1.13**, dan **Gambar 1.14**.

Statistics

Asa	Asal Fakultas					
Ν	Valid	30				
	Missing	0				

Gambar 1.12 Output Statistics Data Jenis Bank

Analisis

- **N Valid = 30**, Data yang diolah sebanyak 30
- Missing = 0, tidak ada data hilang

Asal Fakultas

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	Ekonomi	10	33,3	33,3	33,3
	Fisipol	10	33,3	33,3	66,7
	Hukum	10	33,3	33,3	100,0
	Total	30	100,0	100,0	

Gambar 1.13 Output Tabel Frekuensi Mahasiswa Berdasarkan Fakultas **Analisis**

- Kolom **Frequency** menunjukan banyaknya Jenis Fakultas pada data yang telah diolah. Pada tabel ditunjukkan bahwa terdapat 3 Fakultas.
- Kolom **Percent** berarti presentase jumlah masing-masing jenis Fakultas, yaitu 33.3% untuk Fakultas Ekonomi, 33,3 % untuk Fisipol dan 33,3 % untuk Fakultas Hukum, dapat disimpulkan bahwa dari sampel yang telah diambil rata-rata jumlah sampel adalah sama
- Kolom **Valid Percent** = Kolom **Percent**. Kolom **Cumulative Percent** merupakan jumlah kumulatif presentase.

Analisis

• Pie Chart menunjukkan bahwa proporsi ke tiga fakultas adalah sama

Latihan

1. Diketahui hasil nilai ujian STATISTIK EKONOMI mahasiswa ekonomi semester IV sebagai berikut :

65	44	46	95	55	39	55	89	48	34
34	60	40	40	60	89	85	70	80	62
50	55	67	48	49	45	45	50	89	98
65	70	77	70	59	52	55	49	35	30
80	65	81	60	70	76	78	65	65	88
75	58	55	76	48	70	70	85	64	77
30	30	30	55	95	67	90	68	61	70

Buatlah statistik deskriptif dari data diatas !

2. Diketahui berat badan mahasiswa Ilmu Ekonomi Universitas Sabar Menanti (USM) sebagai berikut:

51	43	55	45	45	53	46	43	54	70
58	45	66	57	46	50	49	55	55	36
56	57	53	58	58	54	48	43	63	58
55	48	50	68	65	41	42	50	64	60
44	46	52	54	56	58	60	62	64	66

Pertanyaan :

a. Buatlah Tabel Distribusi Frekuensinya !

b. Gambarkan ke dalam bentuk grafik

Administation HUB verses and Toffis

Z

TATION AND ADDR. MICH.

BAB 2. UJI t SATU SAMPEL

ONE sample t test merupakan teknik analisis untuk membandingkan satu variabel bebas. Teknik ini digunakan untuk menguji apakah nilai tertentu berbeda secara signifikan atau tidak dengan rata-rata sebuah sampel.

Uji t sebagai teknik pengujian hipotesis deskriptif memiliki tiga kriteria yaitu uji pihak kanan, kiri dan dua pihak.

Uji Pihak Kiri : dikatakan sebagai uji pihak kiri karena t tabel ditempatkan di bagian kiri Kurva

Uji Pihak Kanan : Dikatakan sebagai uji pihak kanan karena t tabel ditempatkan di bagian kanan kurva.

Uji dua pihak : dikatakan sebagai uji dua pihak karena t tabel dibagi dua dan diletakkan di bagian kanan dan kiri

Contoh Kasus

Contoh Rumusan Masalah : Bagaimana tingkat keberhasilan belajar siswa

Hipotesis kalimat :

- 1. Tingkat keberhasilan belajar siswa paling tinggi 70% dari yang diharapkan (uji pihak kiri / 1-tailed)
- 2. Tingkat keberhasilan belajar siswa paling rendah 70% dari yang diharapkan (uji pihak kanan / 1-tailed)

3. Tingkat keberhasilan belajar siswa tidak sama dengan 70% dari yang diharapkan (uji 2 pihak / 2-tailed)

Pengujian Hipotesis : Rumusan masalah Satu

Hipotesis kalimat

- Ha : tingkat keberhasilan belajar siswa paling tinggi 70% dari yang diharapkan
- Ho : tingkat keberhasilan belajar siswa paling rendah 70% dari yang diharapkan

Hipotesis statistik Ha : $\mu_0 < 70\%$ Ho : $\mu_0 \ge 70\%$

Parameter uji :

Jika – t tabel ≤ t hitung maka Ho diterima, dan Ha di tolak Jika – t tabel > t hitung maka Ho ditolak, dan Ha diterima Penyelesaian Kasus 1 (uji t pihak kiri)

Data yang hasil ulangan matematika Universitas Gunung Kelud adalah sebagai berikut :

No	Nama	Jenis_Kel	Nilai	No	Nama	Jenis_Kel	Nilai
1	Zaenuri	L	67	21	Nono	L	72
2	Agus	L	75	22	Rika	W	80
3	Gunawan	L	81	23	Tika	W	75
4	Rita	W	60	24	Tono	L	67
5	Imam	L	80	25	Toni	L	72
6	Rudi	L	75	26	Ika	W	79
7	Rini	W	71	27	Ian	L	80
8	Nindi	W	68	28	Lili	W	81
9	Dinda	W	80	29	Ari	L	75
10	Pandu	L	78	30	Aryani	W	71
11	Bowo	L	71	31	Tejo	L	74
12	Yulia	W	80	32	Tarjo	L	65
13	Priyo	L	65	33	Ngadiman	L	55

Tabel 2.1. Hasil Ujian Matematika Universitas Gunung Kelud

14	Edi	L	57	34	Ngadimin	L	70
15	Mona	W	78	35	Teno	L	72
16	Gito	L	63	36	Wuri	W	82
17	Sukirman	L	76	37	Wilian	L	67
18	Kirun	L	73	38	Ida	W	94
19	Maryati	W	63	39	Ita	W	60
20	Nani	W	65	40	Susi	W	79

Masukan data diatas kedalam SPSS, sehingga diperoleh sebagai berikut :

🚰 *Untitled1 [DataSet0] - SPSS Data Editor									
File Ed	it View Da	ta Transform A	nalyze Grap	hs Utilities					
🗁 ⊟	l 📴 🛧	• 🔶 🐜 🕼 🌢	• • f 👘	田 🕂 🖽 (
3:									
	Nama	Jenis_Kelamin	Nilai	var					
1	Zaenuri	L	67,00						
2	Agus	L	75,00						
3	Gunawan	L	81,00						
4	Rita	W	60,00						
5	Imam	L	80,00						
6	Rudi	L	75,00						
7	Rini	W	71,00						
8	Nindi	W	68,00						
9	Dinda	W	80,00						
10	Pandu	L	78,00						
11	Bowo	L	71,00						
12	Yulia	W	80,00						
13 Priyo		L	65,00						
14 Edi		L	57,00						
15	Mona	W	78,00						
16	Gito	L	63,00						
	ata View 🔏 V	ariable View /	70.00	1					

Klik Analyze – **Pilih Compare Means,** lalu pilih One **Sample T Test,** Masukkan variabel nilai ke dalam Test Variable Box, abaikan yang lain kemudian klik OK

File Ed	it View Da	ata Transform	Analyze Graphs Utilities Wind	low H	Help
File Ed File Ed Image: Second seco	Iedi [DataSet it View D: Pana Di Constanti Agus Gunawan Ruta Imam Rudi Rini Nindi Dinda Pandu Bowo Yulia	0] - SPSS Data Ed ta Transform 	tor Analyze Graphs Utilities Winc Reports Descriptive Statistics Tables Compare Means General Linear Model Generalized Linear Models Correlate Regression Loglinear Classify Data Reduction Scale Nonparametric Tests		Image: Second
	Edi Mona Gito ata View (1	L W L ariable View /	Time Series Survival Multiple Response Missing Value Analysis Complex Samples Quality Control ROC Curve		100 THE 100 TH

Selanjutnya Uji Normalitas data :

Klik **Analyze**, Pilih **Non Parametrics Test** – pilih 1 **Sampel K-S**, masukkan variabel nilai ke dalam **Test Variable List**, kemudian Klik OK

Hasil

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Nilai	40	72,4000	7,99936	1,26481

One-Sample Test

		Test Value = 0									
				Mean	95% Cor Interva Differ	nfidence I of the rence					
	t	df	Sig. (2-tailed)	Difference	Lower	Upper					
Nilai	57,242	39	,000	72,40000	69,8417	74,9583					

		Nilai
Ν		40
Normal Parameters(a,b)	Mean	72,4000
	Std. Deviation	7,99936
Most Extreme Differences	Absolute	,091
	Positive	,091
	Negative	-,083
Kolmogorov-Smirnov Z		,577
Asymp. Sig. (2-tailed)		,894

One-Sample Kolmogorov-Smirnov Test

a Test distribution is Normal.

b Calculated from data.

Hasil uji di atas menunjukkan bahwa t hitung = 57,242. T tabel diperoleh dengan df = 39, sig 5% (1 tailed) = 1.699. Karena – t tabel > dari t hitung (57,242 > 1,699), maka Ho ditolak, artinya tingkat keberhasilan belajar siswa paling tinggi 70% terbukti, bahkan lebih dari yang diduga yaitu sebesar 72,4

Hasil uji normalitas data menunjukkan nilai Kol-Smirnov sebesar 0.600 dan Asymp. Sig tidak signifikan yaitu sebesar 0.577 (> 0.05), sehingga dapat disimpulkan data berdistribusi normal

Pengujian Hipotesis : Rumusan masalah Dua Hipotesis kalimat

- Ha : tingkat keberhasilan belajar siswa paling tinggi 70% dari yang diharapkan
- Ho : tingkat keberhasilan belajar siswa paling rendah 70% dari yang diharapkan

Hipotesis statistik Ha : $\mu_0 < 70\%$ Ho : $\mu_0 > 70\%$

Parameter uji : Jika + t tabel > t hitung maka Ho diterima, dan Ha di tolak Jika + t tabel < t hitung maka Ho ditolak, dan Ha diterima

Penyelesaian Kasus 2 (uji t pihak kanan)

Data yang hasil ulangan matematika siswa sebanyak 40 mahasiswa sama seperti data di atas Klik **Analyze** – Pilih **Compare Means**, lalu pilih **One Sample T Test**, Masukkan variabel **nilai** ke dalam **Test Variable Box**, abaikan yang lain kemudian klik **OK**

Selanjutnya Uji Normalitas data : Klik **Analyze**, Pilih **Non Parametrics Test** – pilih **1 Sampel K-S**, masukkan variabel nilai ke dalam Test Variable List, kemudian Klik OK.

Masih menggunakan hasil analisis di atas, maka diperoleh t hitung sebesar 57,242, dan t tabel = 1.699. Karena t tabel < dari t hitung (1.699 < 57,242), maka **Ho ditolak, dan Ha diterima**. Artinya Ha yaitu tingkat keberhasilan siswa paling tinggi 70% dari yang diharapkan diterima. Sedangkan Ho yang menyatakan bahwa keberhasilan belajar paling rendah 70% ditolak.

BAB 3. UJI t SAMPEL BERPASANGAN

PARED sample t test merupakan uji beda dua sampel berpasangan. Sampel berpasangan merupakan subjek yang sama namun mengalami perlakuan yang berbeda.

CONTOH KASUS

Akan diteliti mengenai perbedaan penjualan sepeda motor merk A disebuah Kabupaten sebelum dan sesudah kenaikan harga BBM. Data diambil dari 10 dealer.

Data yang diperoleh adalah sebagai berikut :

No	Sebelum	Sesudah
1	67	68
2	75	76
3	81	80
4	60	63
5	80	82
6	75	74
7	71	70

Agus Tri Basuki – 19

8	68	71
9	80	82
10	78	79

Masukan dalam SPSS

🔛 *Untit	🚰 *Untitled2 [DataSet1] - SPSS Data Editor						
File Edi	it View Da	ta Transforn	n Analyze	Graphs Uti	lities Windo	w Help	
🗁 🔛	🔒 🖽 🦘	• 🔶 🐜 🕻	M 📲	🛉 🗄 🤹	🎼 🐼 🤇		
1 : Sebe	lum	67					
	Sebelum	Sesudah	var	var	var	var	
1	67,00	68,00					
2	75,00	76,00					
3	81,00	80,00					
4	60,00	63,00					
5	80,00	82,00					
6	75,00	74,00					
7	71,00	70,00					
8	68,00	71,00					
9	80,00	82,00					
10	78,00	79,00					
11							

PENYELESAIAN

Klik ANALYZE > COMPARE MEANS > PAIRED SAMPLES t Test

Masukkan jual_1 dan Jual_2 pada kolom "**Paired variables**" seperti gambar di bawah ini

🚺 *Untit	🖫 *Untitled2 [DataSet1] - SPSS Data Editor								
File Edi	File Edit View Data Transform Analyze Graphs Utilities Window Help								
🗁 📙	l 🗗 🛧	🔿 🐜 🖟	1	M 📲 📺 🖩 🤹 🖡	T 🛐 🔕				
1 : Sebe	lum	67	ſ	Paired-Samples T Test					sit
	Sebelum	Sesudah							
1	67,00	68,00		Sebelum 🖉]	Paired Variables:		ОК	
2	75,00	76,00		sesudah 🖉		Sebelum Sesudah		Perto	_
3	81,00	80,00						Faste	
4	60,00	63,00						Reset	
5	80,00	82,00						Cancel	
6	75,00	74,00							
7	71,00	70,00						Help	-
8	68,00	71,00		Current Selections	,				-
9	80,00	82,00		Variable 1:					
10	78,00	79,00		Variable 2:					_
11								Options	
12							1		_

Abaikan yang lain, klik OK

HASIL

Std. Error Mean Std. Deviation Mean Ν Pair Sebelum 73.5000 10 2.17690 6.88396 1 Sesudah 74,5000 2,03443 10 6,43342

Paired Samples Statistics

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	Sebelum & Sesudah	10	,975	,000

Bagian pertama. Paired Samples Statistic

Menunjukkan bahwa rata-rata penjualan pada sebelum dan sesudah kenaikan BBM. Sebelum kenaikan BBM rata-rata penjualan dari 10 dealer adalah sebanyak 73,4, sementara setelah kenaikan BBM jumlah penjualan rata-rata adalah sebesar 74,5 unit

Bagian Dua. Paired samples Correlatian

Hasil uji menunjukkan bahwa korelasi antara dua variabel adalah sebesar 0.975 dengan sig sebesar 0.000. Hal ini menunjukkan bahwa korelasi antara dua rata-rata penjualan sebelum dan sesudah kenaikan adalah kuat dan signifikan.

Hipotesis

Hipotesis yang diajukan adalah :

Ho : rata-rata penjualan adalah sama

H1 : rata-rata penjualan adalah berbeda

Hasil uji Hipotesis

Paired Samples Test

	Paired Differences							
			Std. Error	95% Cor Interva Diffe	nfidence al of the rence			
	Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1 Sebelum - Sesudah	-1,00000	1,56347	,49441	-2,11844	,11844	-2,023	9	,074

Nilai t hitung adalah sebesar -2,023 dengan sig 0.074. Karena sig > 0.05 maka dapat disimpulkan bahwa Ho diterima, artinya rata-rata penjualan sebelum dan sesudah kenaikan BBM adalah sama (tidak berbeda). dengan demikian dapat dinyatakan bahwa kenaikan harga BBM tidak mempengaruhi jumlah penjualan sepeda motor merek A di kabupaten tersebut.

Latihan

Apakah ada perbedaan kemampuan siswa sebelum dan sesudah diberitakan tambahan pelajaran ?

	Nilai	Ujian		Nilai Ujian		
Responden	Sebelum	Setelah	Responden	Sebelum	Setelah	
Responden	Tambahan	Tambahan	Responden	Tambahan	Tambahan	
	Les	Les		Les	Les	
1	80	85	9	78	80	
2	87	80	10	77	75	
3	67	75	11	76	80	
4	89	85	12	75	80	
5	76	80	13	67	70	
6	78	80	14	65	70	
7	86	90	15	70	80	
8	76	75	16	76	70	

BAB 4. ANALISIS VARIANS

SETIAP perusahaan perlu melakukan pengujian terhadap kumpulan hasil pengamatan mengenai suatu hal, misalnya hasil penjualan produk, hasil produksi produk, gaji pekerja di suatu perusahaan nilainya bervariasi antara satu dengan yang lainnya. Hal ini berhubungan dengan varian dan ratarata yang banyak digunakan untuk membuat kesimpulan melalui penaksiran dan pengujian hipotesis mengenai parameter, maka dari itu dilakukan analisis varian yang ada dalam cabang ilmu statistika industri yaitu ANOVA. Penerapan ANOVA dalam dunia industri adalah untuk menguji rata-rata data hasil pengamatan yang dilakukan pada sebuah perusahaan ataupun industri.

Analisis varians (*analysis of variance*) atau ANOVA adalah suatu metode analisis statistika yang termasuk ke dalam cabang statistika inferensi. Uji dalam anova menggunakan uji F karena dipakai untuk pengujian lebih dari 2 sampel. Dalam praktik, analisis varians dapat merupakan uji hipotesis (lebih sering dipakai) maupunpendugaan (*estimation*, khususnya di bidang genetika terapan).

Anova (*Analysis of variances*) digunakan untuk melakukan **analisis komparasi multivariabel.** Teknik analisis komparatif dengan menggunakan tes "t" yakni dengan mencari perbedaan yang signifikan dari dua buah *mean* hanya efektif bila jumlah variabelnya dua. Untuk mengatasi hal tersebut ada

teknik analisis komparatif yang lebih baik yaitu *Analysis of variances* yang disingkat anova.

Anova digunakan untuk **membandingkan rata-rata populasi** bukan ragam populasi. Jenis data yang tepat untuk anova adalah nominal dan ordinal pada variabelbebasnya, jika data pada variabel bebasnya dalam bentuk interval atau ratio maka harus diubah dulu dalam bentuk ordinal atau nominal. Sedangkan variabel terikatnya adalah data interval atau rasio.

Adapun asumsi dasar yang harus terpenuhi dalam analisis varian adalah :

1. Kenormalan

Distribusi data harus normal, agar data berdistribusi normal dapat ditempuh dengan cara memperbanyak jumlah sampel dalam kelompok.

2. Kesamaaan variansi

Setiap kelompok hendaknya berasaldari popolasi yang sama dengan variansi yang sama pula. Bila banyaknya sampel sama pada setiap kelompok maka kesamaan variansinya dapat diabaikan. Tapi bila banyak sampel pada masing masing kelompok tidak sama maka kesamaan variansi populasi sangat diperlukan.

3. Pengamatan bebas

Sampel hendaknya diambil secara acak (*random*), sehingga setiap pengamatan merupakan informasi yang bebas.

Anova lebih akurat digunakan untuk sejumlah sampel yang sama pada setiap kelompoknya, misalnya masing masing variabel setiap kelompok jumlah sampel atau respondennya sama sama 250 orang.

Anova dapat digolongkan kedalam beberapa kriteria, yaitu :

- 1. Klasifikasi 1 arah (*One Way ANOVA*) Anova klasifikasi 1 arah merupakan ANOVA yang didasarkan pada pengamatan 1 kriteria atau satu faktor yang menimbulkan variasi.
- Klasifikasi 2 arah (*Two Way ANOVA*) ANOVA kiasifikasi 2 arah merupakan ANOVA yang didasarkan pada pengamatan 2 kritenia atau 2 faktor yang menimbulkan variasi.
- 3. Klasifikasi banyak arah (*MANOVA*) ANOVA banyak arah merupakan ANOVA yang didasarkan pada pengamatan banyak kriteria.

Anova Satu Arah (One Way Anova)

Anova satu arah (*one way anova*) digunakan apabila yang akan dianalisis terdiri dari **satu variabel terikat dan satu variabel bebas**. Interaksi suatu kebersamaan antar faktor dalam mempengaruhi variabel bebas, dengan sendirinya pengaruh faktor-faktor secara mandiri telah dihilangkan. Jika terdapat interaksi berarti efek faktor satu terhadap variabel terikatakan mempunyai garis yang tidak sejajar dengan efek faktor lain terhadap variabel terikat sejajar (saling berpotongan), maka antara faktor tidak mempunyai interaksi.

Pengolahan Data dengan Software

Dalam pengujian data ANOVA 1 arah dengan menggunakan software diperlukan software penunjang, yaitu program SPSS. Dalam pengujian kasus ANOVA 1 arah dengan menggunakan program SPSS, penyelesaian untuk pemecahan suatu masalah adalah sebagai berikut :

	А	В	С					
1	PRODUKSI							
2	Shift Pagi	Shift Siang	Shift Malam					
3	60	68	63					
4	67	67	64					
5	68	68	65					
6	70	68	64					
7	68	70	66					
8	69	71	67					
9	70	70	65					
10	73	66	70					
11	71	67	64					
12	69	68	69					
13	70	68	68					
1. Memasukan data yang telah tersedia kedalam input data seperti gambar berikut. (terlebih dahulu isi bagian **Variabel View** seperti yang telah diajarkan pada penugasan sebelumnya) :

🚼 *Unti	tled1 [DataSet	0] - SPSS Data Ec							
File Ed	it View Da	ta Transform							
🗁 🔛	🖹 📴 🔷	• 🔿 🐜 🕼							
2 : SHIF	2 : SHIFT								
	SHIFT	PRODUKSI							
1	1	60,00							
2	1	67,00							
3	1	68,00							
4	1	70,00							
5	1	68,00							
6	1	69,00							
7	1	70,00							
8	1	73,00							
9	1	71,00							
10	1	69,00							
11	1	70,00							
12	2	68,00							
13	2	67,00							
14	2	68,00							
15	2	68,00							
16	2	70,00							
17	2	71,00							
18	2	70,00							

- 2. Melakukan setting analisis data sebagai berikut :
 - a. Pilih *analyze* pada menu file yang ada, pilih *compare mean* **O***ne Way Anova*

🚰 *Untitled1 [DataSet0] - SPSS Data Editor														
File Ed	it View	Data	Transform	Anal	yze	Graphs	Utilities	Window		Help				
🗁 🔒	A 📑	4	🔶 🐜 🧗		Repo	orts			Þ					
2 : SHIF	т				Desc	riptive S	tatistics		•					
<u> </u>	SHIFT	Т	PRODUKSI		Tabl	es			•	Nor	Mar		Var	Lung
1	1	T	60,00		Com	pare Me	eans		F	Mea	ns			
2	1	1	67,00		Gene	eral Line	ar Model		×	One	-Sample T	Test.		
3	1		68,00		Gend	eralized l	Linear Mod	els	۱.	Inde	pendent-9	ampl	es T Test	
4	1	+	70,00		Mixe	d Mode	k			Pain	ed-Sample	< T Te	est	
5	1		68,00		Corr	elate				One	-Way ANC			
6	1		69,00		D	elate				One	- way Aive	VA		
7	1		70,00		Regr	ession			•					
8	1		73,00		Logi	inear								
9	1		71,00		Class	sify			۱.					
10	1		69,00		Data	Reducti	ion		۶.					
11	1		70,00		Scale	e			•					
12	2		68,00		Non	paramet	ric Tests		•					
13	2		67,00		Time	e Seriec								
14	2		68,00											
15	2		68,00		Surv	ival			•					
16	2		70,00		Mult	tiple Res	ponse		•					
17	2		71,00		Miss	ing Valu	e Analysis.							
18	2		70,00		Com	plex Sar	nples		•					
19	2		66,00		Qual	lity Cont	rol		Þ					
20	2		67,00		ROC	Curve								
21	2	Τ	68,00	_					_					

Setelah itu maka akan tampil gambar sebagai berikut :

*Unti	tled1 [Dat	aSet0] - SPSS D	ata Editor			
File Edi	it View	Data Transf	form Analyze	Graphs Ut	tilities Window	Help
🗁 🔛	🔒 📴	수 🔶 ዀ	i? 🚧 📲	🛉 🗄 ₫) 🏗 💽 🥥	•
17 :						
	SHIFT	r PRODU	KSI var	var	var	var
1		A		Î	1	
2		One-Way ANO	VA			
3		SHIETT		Dependent List	t:	
4						
5		1110001101				Paste
6						Reset
7						
8						Cancel
9				Factor:		Help
10						
11						
12			Contra	sts Post H	loc Options	-
13						_
10						

- b. Pada Posisi *Dependent List* masukkan variabel yang menjadi variabel terikat. Dari data yang ada maka variabel terikatnya adalah variabel tingkat produksi, maka pilih tingkat penjualan.
- c. Pada Posisi *faktor* pilih variabel yang menjadi faktor penyebab terjadinya perubahan pada variabel terikat. Dalam hal ini adalah variabel shift. Sehingga akan berubah menjadi seperti ini :

d. Klik tombol *options* dan klik pilihan yang diinginkan seprti berikut :

Untuk melihat keseragaman pada perhitungan statistik, maka dipilih **Descriptive** dan *Homogeneity-of-variance*. Untuk itu klik mouse pada pilihan tersebut. *Missing Value* adalah data yang hilang, karena data yang dianalisis tidak ada yang hilang, maka abaikan saja pilihan ini, kemudian klik *continue*.

Klik *post hoc* dan pilih jenis *post hoc* yang diinginkan.

*Untitled1 [[DataSet0] - SPSS Data Editor
File Edit View	w Data Transform Analyze Graphs Utilities Window Help
🖻 🔒 🖪	🖸 <table-cell-rows> 🔶 🗽 🖗 🌾 🏥 🖽 🕼 🗮 🖗 🗮 🚱 🚳 🌑</table-cell-rows>
17 :	
SH	IFT PRODUKSI var var var var
1	One-Way ANOVA
3	One-Way ANOVA: Post Hoc Multiple Comparisons
5	Equal Variances Assumed
6	LSD S-N-K Waller-Duncan
/	Bonferroni V Tukey Type I/Type II Error Ratio: 100
<u> </u>	Scheffe Duncan Control Category: Last
10	R-E-G-W F Hochberg's GT2 Test
11	R-E-G-W Q Gabriel Control Control Control
12	Equal Variances Not Assumed
13	🔲 Tamhane's T2 📄 Dunnett's T3 📄 Games-Howell 📄 Dunnett's C
14	
15	Significance level: .05
16	Continue Cancel Help
17	

Klik **Tukey** dan **Bonferroni** perhatikan **significance level** yang digunakan. Pada gambar diatas tertuliskan 0,05. Hal itu dikarenakan α sebesar 5%. Kemudian klik **Continue** jika pengisian dianggap selesai. Beberapa saat kemudian akan keluar tampilan *output* SPSS sebagai berikut :

Descriptives

PRODUKSI											
					95% Confidence Interval for						
					Me	ean					
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum			
1	11	68,6364	3,29462	,99337	66,4230	70,8497	60,00	73,00			
2	11	68,2727	1,48936	,44906	67,2722	69,2733	66,00	71,00			
3	11	65,9091	2,30020	,69354	64,3638	67,4544	63,00	70,00			
Total	33	67,6061	2,69188	,46860	66,6516	68,5606	60,00	73,00			

Test of Homogeneity of Variances

PRODUKSI

Levene Statistic	df1	df2	Sig.
1,075	2	30	,354

Analisis Output :

1. Output Descriptives

Output Descriptives memuat hasil-hasil data statistic deskriptif seperti *mean*, standard deviasi, angka terendah dan tertinggi serta standard error. Pada bagian ini terlihat ringkasan statistik dari ketiga sampel.

2. Output Test of Homogenity of Variances

Tes ini bertujuan untuk menguji berlaku tidaknya asumsi untuk Anova, yaitu apakah kelima sampel mempunyai varians yang sama. Untuk mengetahui apakah asumsi bahwa ketiga kelompok sampel yang ada mempunyai varian yang sama (homogen) dapat diterima. Untuk itu sebelumnya perlu dipersiapkan hipotesis tentang hal tersebut.

Adapun hipotesisnya adalah sebagai berikut :

H₀ = Ketiga variansi populasi adalah sama

H₁ = Ketiga variansi populasi adalah tidak sama

Dengan pengambilan Keputusan:

- Jika signifikan > 0.05 maka H₀ diterima
- Jika signifikan < 0,05 maka H₀ ditolak

Berdasarkan pada hasil yang diperoleh pada *test of homogeneity of variances*, dimana dihasilkan bahwa probabilitas atau signifikanya adalah 0,354 yang berarti lebih besar dari 0.05 maka dapat disimpulkan bahwa hipotesis nol (Ho) diterima, yang berarti asumsi bahwa ketiga varian populasi adalah sama (*homogeny*) dapat diterima.

3. Output Anova

Setelah kelima varians terbukti sama, baru dilakukan uji Anova untuk menguji apakah kelima sampel mempunyai rata-rata yang sama. Outpun Anova adalah akhir dari perhitungan yang digunakan sebagai penentuan analisis terhadap hipotesis yang akan diterima atau ditolak. Dalam hal ini hipotesis yang akan diuji adalah :

- H₀ = Tidak ada perbedaan rata-rata hasil penjualan dengan menggunakan jenis kemasan yang berbeda. (Sama)
- H₁ = Ada perbedaan rata-rata hasil penjualan dengan menggunakan jenis kemasan yang berbeda. (Tidak Sama)

Untuk menentukan Ho atau Ha yang diterima maka ketentuan yang harus diikuti adalah sebagai berikut :

- a) Jika F_{hitung}> F_{tabel} maka H₀ ditolak
- b) Jika F_{hitung}< F_{tabel} maka H₀ diterima

c) Jika signifikan atau probabilitas > 0.05, maka H₀ diterima

d) Jika signifikan atau probabilitas < 0,05, maka H₀ ditolak

ANOVA	•
-------	---

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	48,242	2	24,121	3,941	,030
Within Groups	183,636	30	6,121		
Total	231,879	32			

Berdasarkan pada hasil yang diperoleh pada uji ANOVA, dimana dilihat bahwa F hitung = > F tabel = 3,941, yang berarti Ho ditolak dan menerima Ha.

Sedangkan untuk nilai probabilitas dapat dilihat bahwa nilai probabilitas adalah 0,030 < 0,05. Dengan demikian hipotesis nol (Ho) ditolak.

Hal ini menunjukkan bahwa ada perbedaan rata-rata hasil produksi dengan shift pagi, siang dan malam.

4. Output Tes Pos Hoc

Post Hoc dilakukan untuk mengetahui kelompok mana yang berbeda dan yang tidak berbeda. Hal ini dapat dilakukan bila F hitungnya menunjukan ada perbedaan. Kalau F hitung menunjukan tidak ada perbedaan, analisis sesudah anova tidak perlu dilakukan.

Multiple Comparisons

			Mean			95% Confide	ence Interval
	(I) Shift	(J) Shift	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	1	2	,36364	1,05496	,937	-2,2371	2,9644
		3	2,72727*	1,05496	,038	,1265	5,3280
	2	1	-,36364	1,05496	,937	-2,9644	2,2371
		3	2,36364	1,05496	,081	-,2371	4,9644
	3	1	-2,72727*	1,05496	,038	-5,3280	-,1265
		2	-2,36364	1,05496	,081	-4,9644	,2371
Bonferroni	1	2	,36364	1,05496	1,000	-2,3115	3,0388
		3	2,72727*	1,05496	,045	,0522	5,4024
	2	1	-,36364	1,05496	1,000	-3,0388	2,3115
		3	2,36364	1,05496	,098	-,3115	5,0388
	3	1	-2,72727*	1,05496	,045	-5,4024	-,0522
		2	-2,36364	1,05496	,098	-5,0388	,3115

Dependent Variable: PRODUKSI

*. The mean difference is significant at the .05 level.

PRODUKSI

			Subset for alpha = .05		
	Shift	N	1	2	
Tukey HSD ^a	3	11	65,9091		
	2	11	68,2727	68,2727	
	1	11		68,6364	
	Sig.		,081	,937	

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 11,000.

Dari tabel diatas dapat dilihat bahwa perbedaan *mean* Shift 1 dan Shift 2 adalah 0,3636 (rata-rata lebih kecil banyak 0,3636 poin dibanding shift 2). Angka tersebut berasal dari *mean* shift 1 adalah 68,6364 dan shift 2 adalah 68,2727 sehingga didapatkan 0,3636 (lihat *output* descriptive statistics). Perbedaan *mean* shift 1 dan shift 3 adalah 2,727 (shift 1 lebih besar 2,727 dari shift 3). Angka tersebut berasal dari *mean* shift 1 adalah 68,6364 dan shift 3 adalah 65,9 sehingga didapatkan 2,727. Untuk selanjutnya dapat dilihat gambar diatas untuk perbandingan shiftseterusnya.

Catatan :

Hasil uji signifikansi dengan mudah bisa dilihat pada *output* dengan ada atau tidak adanya tanda "*" pada kolom "*Mean Difference*". Jika tanda * ada di angka *meandifference* maka perbedaan tersebut nyata atau signifikan. Jika tidak ada tanda *, maka perbedaan tidak signifikan.

Interpretasi :

- a. Shift yang paling baik untuk meningkatkan produksi adalah shift 1. Hal ini dapat dilihat dari jumlah rata-rata tertinggi pada shift 1. Sedangkan yang kurang baik dalam meningkatkan produksi adalah shift 3.
- b. Ada perbedaan tingkat produksi pada shift 1 dan shift 3, dan tidak ada perbedaan tingkat produksi pada shift 1 dan shift 2, shift 2 dan shift 3.
- c. Ada pengaruh yang signifikan antara produksi pada shift 1 dan shift 3.

Contoh 2 :

Uji anova satu arah akan digunakan untuk mengetahui adakah hubungan antara tingkat stress mahasiswa pada tiap kelompok Fakultas di Universitas Tugu Muda (UNTUMU). Tingkat stress diukur pada skala 1-10. Skala 1 hingga 3 menunjukkan mahasiswa cukup stress. Skala 4 sampai 6 menunjukkan mahasiswa dalam keadaan stress dan skala 7 keatas menunjukkan mahasiswa sangat stress. Pengamatan dilakukan pada waktu yang berbeda dengan menggunakan metode pengumpulan data yaitu kuisioner yang disebarkan pada 75 responden.

	Fakultas							
Pengamatan	Ekonomi	Hukum	ISIPOL	Teknik	Pertanian			
	4	4	1	4	1			
	6	3	2	7	4			
1	2	2	3	9	5			
	8	1	5	5	4			
	8	8	2	4	7			
	2	9	1	2	8			
2	2	5	9	1	8			
	3	3	8	1	7			
	4	1	4	4	7			

Tabel 4.1. Tabel rekapitulasi tingkat stress mahasiswa tiap kelompok jurusanyang ada di Fakultas dilingkungan UNTUMU

	Fakultas								
Pengamatan	Ekonomi	Hukum	ISIPOL	Teknik	Pertanian				
	5	5	7	7	7				
	6	7	5	9	5				
	2	9	1	9	6				
3	1	6	3	2	7				
	9	7	2	1	3				
	8	3	5	4	4				

1. Hipotesis

- Ho : Semua rata rata populasi fakultas sama, tidak ada hubungan antara tingkat stress dan fakultas di UNTUMU.
- H_1 : Tidak semua sama. beberapa atau semua rata rata populasi fakultas sama, ada hubungan antara tingkat stress dan fakultas di UNTUMU.

2. Tingkat signifikansi

Dengan tingkat kepercayaan 95 persen maka tingkat signifikansi (1-) = 5 persen atau sebesar 0,05.

- 3. Derajat kebebasan
 - Dfjumlah kuadrat penyimpangan total = N 1
 - Df jumlah kuadrat penyimpangan total = 75 1 = 74
 - Df jumlah kuadrat dalam = N k
 - Df jumlah kuadrat dalam = 75 5 = 70
 - Df jumlah kuadrat antar kelompok = k 1
 - Df jumlah kuadrat antar kelompok = 5 1 = 4
- 4. Kriteria pengujian Untuk uji normalitas :

Signifikan atau probabilitas > 0.05, maka data berdistribusi normal Signifikan atau probabilitas < 0.05, maka data tidak berdistribusi normal

Untuk uji homogenitas :

Signifikan atau probabilitas > 0.05, maka H_0 diterima Signifikan atau probabilitas < 0.05, maka H_0 ditolak

Untuk uji ANOVA :

Jika signifikan atau probabilitas > 0.05, maka H_0 diterima Jika signifikan atau probabilitas < 0.05, maka H_0 ditolak

5. Pengolahan Data SPSS

a. Pengisian variabel

Pada kotak Name, sesuai kasus, ketik "stress" kemudian pada baris kedua ketik **"fakultas"** Pada Kotak Label variabel jurusan isi dengan **"tingkat stress"** dan pada kotak label variabel responden isi dengan "jurusan".

K	Klik Values dua kali untuk variabel "fakultas"								
0	Values : 1 ; Label : Ekonomi								
0	Values : 2 ; Label : Hukum	Add							
0	Values : 3 ; Label : ISIPOL	Add							
0	Values : 4 ; Label : Teknik	Add							
0	Values : 5 ; Label : Pertanian	Add							

Klik Ok

1	'Untitled1	L [Data	aSet0] -	SPSS D	ata Ed	litor									
File	Edit \	/iew	Data	Transf	orm	Anal	yze G	raphs	Utilities	: Wi	ndow	He	lp		
⊜	8		• e	⊨ ‱	62	н	價值		⊕ 🖪	¥	۵	•			
	Value L	abels												7 🖻	<u> </u>
⊢	Value	Label	s	_										ОК) 16) 16
	Value:		1											Cancel	
	Ad	d	1.00 - 1	"Ekonor	ní"									Help	
	Char	nge	2.00 - 3.00 -	"Hukum "Isipol"											
	Rem	ove	4,00 = 5,00 =	"Tehnik "Pertani	an"										E
-															
	1														
			_			-	_								

b. Pengisian DATA VIEW

Masukkan data mulai dari data ke-1 sampai dengan data ke-75.

c. Uji normalitas

1) Menu Analyze -> Descriptive statistics -> explore

ļ	Anal	yze	Graphs	Utilities	Window	N	Help						
		Rep	orts			•							
		Des	criptive St	atistics		►		Fre	quencies			1	_
		Tab	les			►		Des	scriptives			ar	
1		Cor	npare Mea	ans		►		Exp	lore			-	
1	General Linear Model				►		Crosstabs						
]	Generalized Linear Models					►		Ratio					
	Mixed Models				►		P-P Plots						
	Correlate				►		Q-0	Q Plots			L		
$\left \right $		Reg	ression			►	F	_					\vdash
1		Log	linear			►	E-			-			\vdash
1		Clas	ssify			►							
1		Dat	a Reductio	on		►							
		Sca	le			►							
		Nor	nparametr	ic Tests		►	Ŀ			_			
$\left \right $		Tim	e Series			►	H			_			-
		Sun	vival			►	E-			-			\vdash
1		Mu	ltiple Resp	onse		►	t –						
1		Mis	sing Value	Analysis									
1		Cor	nplex Sam	ples		►							
		Qua	ality Contr	ol		►	L						
		ROO	Curve				H						
	_	_	1	-		-							

2) Masukan variabel tingkat stress ke dependent list sebagai variabel terikat dan masukkan variabel jurusan ke faktor list sebagai variabel bebas, lalu klik Ok

Explore	—
	Dependent List: Tingkat Stres [Stres] Paste
•	Factor List: Fakultas [Fakultas] Help
	Label Cases by:
Display ● Both ○ Statistics ○ Plots	Statistics Plots Options

 Pada pilihan Statistics, isi *confidence interval for mean* dengan 95 % yang menandakan bahwa tingkat kepercayaan yang diambil sebesar 95 %. Lalu klik continue.

ics	X
Interval for Me	an: 05 %
	an <u>95</u> %
Cancel	Help
	ics Interval for Me Cancel

4) Pada pilihan **Plots**, tandai **normality plots with tests**, **histogram** pada **descriptive** dan **untransformed**. Lalu klik **continue**.

Boxplots	Descriptive
Eactor levels together	Stem-and-leaf
O Dependents together	🛃 <u>H</u> istogram
○ <u>N</u> one	
Spread vs Level with Lev	vene Test

5) Klik Ok hingga muncul output SPSS.

d. Uji One Way ANOVA

- Analyze Graphs Utilities Window Help Reports Þ Descriptive Statistics Tables ► Compare Means Means... Þ General Linear Model One-Sample T Test... ¥ Generalized Linear Models Independent-Samples T Test... ۲ Mixed Models Paired-Samples T Test... Þ One-Way ANOVA... Correlate Þ Regression Loglinear Classify Data Reduction Scale Nonparametric Tests **Time Series** Survival Multiple Response ۲ Missing Value Analysis... Complex Samples ۲ Quality Control Þ ROC Curve...
- 1) Menu Analyze -> Compare means -> One way ANOVA

2) Masukan variabel tingkat **tingkat stress** ke **dependent list** sebagai variabel terikat dan masukkan **variabel fakultas** ke **faktor** sebagai variabel bebas, lalu klik Ok.

ſ	🔝 One-Way ANOVA		X
		Dependent List:	OK Paste Reset Cancel
		Factor:	Help
		Contrasts Post Hoc Options	

3) Pada pilihan Options, tandai **descriptives** serta **homogeneity of variant tests** pada statistics. Lalu klik **continue**.

Statistics —		
Descriptive		
Eixed and r	andom effects	
🗹 <u>H</u> omogenei	ity of variance test	
Brown-For	sythe	
VVelch		
Means plot		
Missing Valu	es	
Exclude ca	ses analysis by analysis	
O Exclude ca	ises listwise	

4) Pada pilihan **Post hoc**, tandai **LSD** pada equal variances assumed serta isi **significance level** berdasarkan tingkat signifikansi yang telah diberikan. Lalu klik continue.

	<u>s-N-K</u>	Waller-Duncan
<u>B</u> onferroni	<u>T</u> ukey	Type I/Type II Error Ratio: 100
Sįdak	Tu <u>k</u> ey's-b	
Scheffe	Duncan	Control Category : Last 👻
<u>R</u> -E-G-W F	<u>H</u> ochberg's GT2	Test
R-E-G-W Q	<u>G</u> abriel	
Equal Variances	Not Assumed	Games-Howell Dunnett's C

5) Klik Ok hingga muncul output SPSS.

Hasil Output SPSS

a. Test of normality

Tests of Normality

		Kolmogorov-Smirnov(a)			Shapiro-Wilk			
	Fakultas	Statistic	df	Sig.	Statistic	df	Sig.	
Tingkat Stres	Ekonomi	,173	15	,200(*)	,905	15	,113	
	Hukum	,154	15	,200(*)	,938	15	,354	
	Isipol	,165	15	,200(*)	,905	15	,112	
	Tehnik	,180	15	,200(*)	,886	15	,058	
	Pertanian	,232	15	,030	,908	15	,125	

* This is a lower bound of the true significance.

a Lilliefors Significance Correction

b. Test of homogeneity of variance

Test of Homogeneity of Variance

		Levene Statistic	df1	df2	Sig.
Tingkat Stres	Based on Mean	,729	4	70	,575
	Based on Median	,471	4	70	,757
	Based on Median and with adjusted df	,471	4	64,184	,757
	Based on trimmed mean	,722	4	70	,580

c. Anova

ANOVA

Tingkat Stres					
	Sum of				
	Squares	df	Mean Square		Sig.
Between Groups	21,413	4	5,353	,780	,542
Within Groups	480,133	70	6,859		
Total	501,547	74			

c. Post hoc

Multiple Comparisons

Dependent Variable: Tingkat Stres

			Mean			95% Confide	ence Interval
	(I) Fakultas	(J) Fakultas	(I-J)	Std. Error	Sia.	Lower Bound	Upper Bound
Tukey HSD	Ekonomi	Hukum	-,20000	,95632	1,000	-2,8778	2,4778
-		Isipol	,80000	,95632	,918	-1,8778	3,4778
		Tehnik	,06667	,95632	1,000	-2,6112	2,7445
		Pertanian	-,86667	,95632	,894	-3,5445	1,8112
	Hukum	Ekonomi	,20000	,95632	1,000	-2,4778	2,8778
		Isipol	1,00000	,95632	,833	-1,6778	3,6778
		Tehnik	,26667	,95632	,999	-2,4112	2,9445
		Pertanian	-,66667	,95632	,956	-3,3445	2,0112
	Isipol	Ekonomi	-,80000	,95632	,918	-3,4778	1,8778
		Hukum	-1,00000	,95632	,833	-3,6778	1,6778
		Tehnik	-,73333	,95632	,939	-3,4112	1,9445
		Pertanian	-1,66667	,95632	,415	-4,3445	1,0112
	Tehnik	Ekonomi	-,06667	,95632	1,000	-2,7445	2,6112
		Hukum	-,26667	,95632	,999	-2,9445	2,4112
		Isipol	,73333	,95632	,939	-1,9445	3,4112
		Pertanian	-,93333	,95632	,865	-3,6112	1,7445
	Pertanian	Ekonomi	,86667	,95632	,894	-1,8112	3,5445
		Hukum	,66667	,95632	,956	-2,0112	3,3445
		Isipol	1,66667	,95632	,415	-1,0112	4,3445
		Tehnik	,93333	,95632	,865	-1,7445	3,6112
Bonferroni	Ekonomi	Hukum	-,20000	,95632	1,000	-2,9721	2,5721
		Isipol	,80000	,95632	1,000	-1,9721	3,5721
		Tehnik	,06667	,95632	1,000	-2,7054	2,8388
		Pertanian	-,86667	,95632	1,000	-3,6388	1,9054
	Hukum	Ekonomi	,20000	,95632	1,000	-2,5721	2,9721
		Isipol	1,00000	,95632	1,000	-1,7721	3,7721
		Tehnik	,26667	,95632	1,000	-2,5054	3,0388
		Pertanian	-,66667	,95632	1,000	-3,4388	2,1054
	Isipol	Ekonomi	-,80000	,95632	1,000	-3,5721	1,9721
		Hukum	-1,00000	,95632	1,000	-3,7721	1,7721
		Tehnik	-,73333	,95632	1,000	-3,5054	2,0388
		Pertanian	-1,66667	,95632	,858	-4,4388	1,1054
	Tehnik	Ekonomi	-,06667	,95632	1,000	-2,8388	2,7054
		Hukum	-,26667	,95632	1,000	-3,0388	2,5054
		Isipol	,73333	,95632	1,000	-2,0388	3,5054
		Pertanian	-,93333	,95632	1,000	-3,7054	1,8388
	Pertanian	Ekonomi	,86667	,95632	1,000	-1,9054	3,6388
		Hukum	,66667	,95632	1,000	-2,1054	3,4388
		Isipol	1,66667	,95632	,858	-1,1054	4,4388
		Tehnik	,93333	,95632	1,000	-1,8388	3,7054

7. Analisis Hasil Output SPSS

a. Test of normality

Uji normalitas menunjukkan dari hasil keseluruhan tersebut dapat ditarik kesimpulan bahwa **signifikansi seluruh fakultas > 0,05 yang artinya distribusi data normal.** Maka data yang diambil dinyatakan tidak terjadi penyimpangan dan layak untuk dilakukan uji ANOVA.

b. Test of homogenity of variance

Tes ini bertujuan untuk menguji berlaku tidaknya asumsi untuk ANOVA, yaitu apakah kelima kelompok sampel mempunyai variansi yang sama. Uji keseragaman variansi menunjukkan probabilitas atau signifikansi seluruh sampel adalah 0,58, yang berarti signifikansi = 0,58 > 0,05 maka sesuai dengan kriteria pengujian dapat disimpulkan bahwa hipotesis nol (H₀) diterima, yang berarti asumsi bahwa kelima varian populasi adalah sama (homogen) dapat diterima.

c. ANOVA

Setelah kelima varian terbukti sama, baru dilakukan uji ANOVA untuk menguji apakah kelima sampel mempunyai rata-rata yang sama. Uji ANOVA menunjukkan nilai probabilitas atau signifikansi adalah 0,542. Hal ini berarti signifikansi lebih besar dari 0.05 maka **H**₀ juga diterima yang artinya ternyata tidak ada perbedaan rata-rata antara kelima kelompok fakultas yang diuji. Maka tidak ada pengaruh tingkat stress terhadap kelompok fakultas yang ada di UNTUMU.

d. Post hoc

Post Hoc dilakukan untuk mengetahui kelompok mana yang berbeda dan yang tidak berbeda. Atau dapat dikatakan dalam kasus ini, kelompok jurusan mana yang memberikan pengaruh signifikan terhadap perbedaan tingkat stress. Uji post hoc merupakan uji kelanjutan dari uji ANOVA jika hasil yang diperoleh pada uji ANOVA adalah H₀ diterima atau terdapat perbedaan antara tiap kelompok. Namun karena uji ANOVA menunjukkan H₀ ditolak, maka otomatis uji post hoc menunjukkan tidak ada kelompok Fakultas di lingkungan UNTUMU yang memberikan pengaruh pada tingkat stress. Hal ini juga dapat dilihat pada tabel Post hoc yang tidak menunjukkan tanda (*) sebagai penanda bahwa terdapat kelompok yang signifikan.

8. Keputusan

Dari keseluruhan uji yang dilakukan maka dapat disimpulkan bahwa tidak terdapat pengaruh maupun perbedaan yang signifikan antara kelima fakultas yang ada di UNTUMU yang artinya tidak terdapat hubungan antara tingkat stress mahasiswa dengan kelompok Fakultas di Universitas Tugu Muda.

Anova Dua Arah (Two Way Anova)

ANOVA dua arah ini digunakan bila sumber keragaman yang terjadi tidak hanya karena satu faktor (perlakuan). Faktor lain yang mungkin menjadi sumber keragaman respon juga harus diperhatikan. Faktor lain ini bisa perlakuan lain atau faktor yang sudah terkondisi. Pertimbangan memasukkan faktor kedua sebagai sumber keragaman ini perlu bila faktor itu dikelompokkan (blok), sehingga keragaman antar kelompok sangat besar,tetapi kecil dalam kelompok sendiri.

Tujuan dan pengujian ANOVA 2 arah ini adalah untuk mengetahui apakah ada pengaruh dari berbagai kriteria yang diuji terhadap hasil yang diinginkan. Misal, seorang manajer teknik menguji apakah ada pengaruh antara jenis pelumas yang dipergunakan pada roda pendorong dengan kecepatan roda pendorong terhadap hasil penganyaman sebuah karung plastik pada mesin *circular*.

Pengolahan Menggunakan Software

Studi Kasus 1

Ingin diketahui apakah jurusan dan gender mempengaruhi skor TPA mahasiswa. Didapat data sebagai berikut :

		Sko	r TPA
		Laki-Laki	Perempuan
	Iln	543	560
	nu	525	570
	Eko	548	580
	noi	560	590
	mi	600	590
	Ν	545	565
an	ſan	587	550
sna	aje	589	570
Inl	me	590	590
	n	595	590
		510	600
	Aku	520	590
	Inta	525	580
	insi	550	560
		525	590

Dalam pengujian kasus ANOVA 2 arah dengan menggunakan program SPSS untuk pemecahan suatu masalah adalah sebagai berikut:

1. Memasukan data ke SPSS

Hal yang perlu diperhatikan dalam pengisian variabel Name adalah "tidak boleh ada spasi dalam pengisiannya".

🖸 *Un	*Untitled2 [DataSet1] - SPSS Data Editor								
File E	dit '	View	Data	аT	ransf	orm	Ana	lyze	0
🗁 🖪	e,	 †	•	•	*	[?	# \$	►	ľ
		Gende	er	Jur	usan		Skor_	TPA	
1		1,	00		1,0	0	54	3,00	
2	2	1,	00		1,0	0	52	5, 0 0	
3	3	1,	00		1,0	0	54	8,00	
4	L.	1,	00		1,0	0	56	0,00	
5	5	1,	00		1,0	0	60	0,00	
6	5	1,	00		1,0	0	54	5, 0 0	
7	7	1,	00		1,0	0	58	7,00	
8	3	1,	00		1,0	0	58	9,00	
9)	1,	00		1,0	0	59	0,00	
10)	1,	00		1,0	0	59	5,00	
11		1,	00		2,0	0	51	0,00	
12	2	1,	00		2,0	0	52	0,00	Τ
13	3	1,	00		2,0	0	52	5,00	
14	L.	1,	00		2,0	0	55	0,00	
15	5	1,	00		2,0	0	52	5,00	
16	5	2,	00		2,0	0	56	0,00	Τ
17	1	2,	00		2,0	0	57	0,00	
18	3	2,	00		2,0	0	58	0,00	
19)	2,	00		2,0	0	59	0,00	
20)	2,	00		2,0	0	59	0,00	
21		2,	00		3,0	0	56	5, 00	
22	2	2,	00		3,0	0	55	0,00	
23	3	2,	00		3,0	0	57	0,00	Τ
24	L.	2,	00		3,0	0	59	0,00	
25	5	2,	00		3,0	0	59	0,00	
26	5	2,	00		3,0	0	60	0,00	
27	r -	2,	00		3,0	0	59	0,00	
28	3	2,	00		3,0	0	58	0,00	
29)	2,	00		3,0	0	56	0,00	
30)	2,	00		3,0	0	59	0,00	
31									
AD	Data 1	View	λ va	riable	e Viev	NÍ			Т

- 2. Pengolahan data dengan SPSS Langkah-langkahnya :
 - a. Pilih Analyze ------ General Linear Model------ Univariate

b. Kemudian lakukan pengisian terhadap : Kolom *Dependent Variable* masukan skor TPA, Kolom Faktor(s) Masukkan yang termasuk *Fixed Factor*(s) (dalam kasus ini : tingkat dan gender) Masukkan yang termasuk *Random Factor*(s)

💷 Univariate		×
	Dependent Variable:	Model
ĺ.	Fixed Factor(s):	Plots
	Random Factor(s):	Save Options
C	Covariate(s):	
	WLS Weight:	
OK Past	e Reset Cancel Help	

c. Klik Plots

Horizontal Axis : ... (jurusan) Separate lines : ... (gender)

🔝 Univariate		23
Univariate: Profile Plots		×
Factors: Gender Jurusan	Horizontal Axis: Horizontal Axis: Separate Lines: Separate Plots:	Continue Cancel Help
Plots: Add	Change Rem	love
Jurusan Gender	te Reset Cancel H	lelp

d. Klik Post Hoc

Masukan variabel yang akan di uji MCA ... (tingkat) 🛽 Tukey

Univariate: Post Ho	c Multiple Comparisons	for Observed Means	- ×
Factor(s): Gender Jurusan	Post I	Hoc Tests for: san	Continue Cancel Help
Equal Variances A LSD Sonferroni Sidak Scheffe R-E-G-W F R-E-G-W Q	ssumed S-N-K Tukey Tukey's-b Duncan Hochberg's GT2 Gabriel	Naller-Duncan Type I/Type II Error Ra Dunnett Control Category: Test ③ 2-sided ⑦ < Contro	tio: 100 Last 💌 ol 🔘 > Control
Equal Variances N	lot Assumed	Games-Howell 🔲 Dur	nnett's C

e. Options

Univariate: Options	×
Estimated Marginal Means Factor(s) and Factor Interactions: (OVERALL) Gender Jurusan Gender*Jurusan	Display Means for: Gender*Jurusan Compare main effects Confidence interval adjustment: LSD (none)
Display	Homogeneity tests
Estimates of effect size	Spread vs. level plot
Observed power	Residual plot
Parameter estimates	Lack of fit
Contrast coefficient matrix	General estimable function
Significance level: ,05 C	onfidence intervals are 95%
	Continue Cancel Help

f. Klik OK, diperoleh output :

Levene's Test of Equality of Error Variance^as

Dependent Variable: Skor_TPA

F	df1	df2	Sig.	
.586	5	24	.711	

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept+gender+jurusan+gender * jurus

Tests of	Between-Subjects	Effects
----------	-------------------------	---------

Dependent Variable: Skor_TPA							
	Type III Sum					Partial Eta	
Source	of Squares	df	Mean Square	F	Sig.	Squared	
Corrected Model	12321.767 ^a	5	2464.353	6.986	.000	.593	
Intercept	9618605.633	1	9618605.633	27268.774	.000	.999	
gender	4392.300	1	4392.300	12.452	.002	.342	
jurusan	2444.067	2	1222.033	3.464	.048	.224	
gender * jurusan	5485.400	2	2742.700	7.776	.002	.393	
Error	8465.600	24	352.733				
Total	9639393.000	30					
Corrected Total	20787.367	29					

a. R Squared = .593 (Adjusted R Squared = .508)

<u>Uji Interaksi</u>

- 1. H₀: $\gamma i j=0$ Tidak ada interaksi antara faktor jurusan dan gender H₁: $\gamma i j \neq 0$ Ada interaksi antara jurusan dan gender
- 2. Tingkat Signifikasi $\alpha = 5\%$
- Statistik Uji P-value = 0,02 (p_value diambil dari tabel dengan sig yang berasal dari source gender *jurusan)
- 4. Daerah Kritik H_0 ditolak jika P-value < α
- 5. Kesimpulan Karena p_value (0,02) < α (0,05) maka H₀ ditolak.

Jadi tidak ada interaksi antara faktor jurusan dengan faktor gender pada tingkat signifikasi 5%. Hal tersebut manyatakan bahwa uji efek untuk faktor gender dan jurusan bisa dilakukan.

<u>Uji Efek faktor gender</u>

- 1. $H_0: \alpha_1 = \alpha_2 = ... = \alpha_i$ (Tidak ada efek faktor gender) $H_1:$ minimal ada satu $\alpha_1 \neq 0$ (Ada efek faktor gender)
- 2. Tingkat Signifikasi $\alpha = 5\%$
- Statistik Uji P-value = 0,002 (p_value diambil dari sig pada tabel dengan source gender)
- 4. Daerah Kritik H_0 ditolak jika P-value < α
- 5. Kesimpulan

Karena p_value (0,002) < α (0,05) maka H₀ ditolak. Jadi ada efek faktor gender untuk data tersebut pada tingkat signifikasi 5% Karena faktor gender hanya terdiri dari 2 level faktor, sehingga tidak diperlukan uji MCA

<u>Jurusan</u>

- 1. H₀: $\alpha_1 = \alpha_2 = ... = \alpha_i$ (Tidak ada efek faktor jurusan) H₁: minimal ada satu $\alpha_i \neq 0$
- 2. Tingkat Signifikasi α = 5%
- 3. Statistik Uji P-value = 0,048 (p_value diambil dari tabel pada sig dengan source jurusan)
- 4. Daerah Kritik H_0 ditolak jika P-value < α
- 5. Kesimpulan Karena p_value (0,048) < α (0,05) maka H₀ ditolak.

Jadi ada efek faktor jurusan untuk data tersebut pada tingkat signifikasi 5% Karena faktor jurusan mempengaruhi SKOR secara signifikan, sehingga perlu dilakukan uji MCA Analisis perbandingan Ganda :

Multiple Comparisons

Tukey HSD						
		Mean Difference			95% Confide	ence Interval
(I) Jurusan	(J) Jurusan	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
llmu_ekonomi	Manajemen	16,2000	8,96922	,187	-6,0876	38,4876
	Akuntansi	-10,3000	8,96922	,494	-32,5876	11,9876
Manajemen	Ilmu_ekonomi	-16,2000	8,96922	,187	-38,4876	6,0876
	Akuntansi	-26,5000*	8,96922	,017	-48,7876	-4,2124
Akuntansi	Ilmu_ekonomi	10,3000	8,96922	,494	-11,9876	32,5876
	Manajemen	26,5000*	8,96922	,017	4,2124	48,7876

Dependent Variable: Skor_TPA Tukey HSD

Based on observed means.

*. The mean difference is significant at the ,05 level.

Skor_TPA

Tukey HSD ^{a,b}				
		Subset		
Jurusan	Ν	1	2	
Manajemen	10	552,0000		
llmu_ekonomi	10	568,2000	568,2000	
Akuntansi	10		578,5000	
Sig.		,187	,494	

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares

The error term is Mean Square(Error) = 402,235.

- a. Uses Harmonic Mean Sample Size = 10,000.
- b. Alpha = ,05.

Dapat juga disimpulkan bahwa terdapat perbedaan Skor TPA yang signifikan antara mahasiswa Akuntansi dan Manajemen. Sedangkan antara jurusan Akuntansi dan jurusan Ilmu Ekonomi serta Jurusan Ilmu ekonomi dengan jurusan manajemen menunjukkan tidak adanya perbedaan yang signifikan dalam hal Skor TPA.

Studi Kasus 2

Sebuah pabrik selama ini memperkerjakan karyawannya dalam 3 shift (satu shift terdiri atas sekelompok pekerja yang berlainan). Manajer pabrik tersebut

ingin mengetahui apakah ada perbedaan produktifitas yang nyata diantara 3 kelompok kerja shift yang ada selama ini. Selama ini setiap kelompok kerja terdiri atas wanita semua atau pria semua, dan setelah kelompok pria bekerja dua hari berturut-turut, ganti kelompok wanita (tetap terbagi tiga kelompok) yang bekerja. Demikian seterusnya, dua hari untuk pria dan dua hari untuk wanita.

Hari	Shift 1	Shift 2	Shift 3	Gender
1	38	45	45	Pria
2	36	48	48	Pria
3	39	42	42	Wanita
4	34	46	46	Pria
5	35	41	41	Pria
6	32	45	45	Wanita
7	39	48	48	Pria
8	34	47	47	Pria
9	32	42	42	Wanita
10	36	41	41	Pria
11	33	39	39	Pria
12	39	33	33	Wanita

Tabel 4.2. Berikut hasil pengamatan (angka dalam unit)

Nb : pada baris 1, di hari pertama kelompok shift 1 berproduksi 38 unit, kelompok shift 2 berproduksi 45 unit, kelompok shift 3 berproduksi 45 unit, dengan catatan semua anggota kelompok pria. Demikian untuk data yang lain.

Dalam pengujian kasus ANOVA 2 arah dengan menggunakan program SPSS ver 15.0, penyelesaian untuk pemecahan suatu masalah adalah sebagai berikut:

Memasukkan Data ke SPSS

Tabel pada kasus di atas harus kita dirubah dalam format berikut ini jika akan digunakan dalam uji ANOVA dengan SPSS

Produk	Shift	Gender
38	Satu	Pria
36	Satu	Pria
39	Satu	Wanita
34	Satu	Pria
35	Satu	Pria

Produk	Shift	Gender
32	Satu	Wanita
39	Satu	Pria
34	Satu	Pria
32	Satu	Wanita
36	Satu	Pria
33	Satu	Pria
39	Satu	Wanita
45	Dua	Pria
48	Dua	Pria
42	Dua	Wanita
46	Dua	Pria
41	Dua	Pria
45	Dua	Wanita
48	Dua	Pria
47	Dua	Pria
42	Dua	Wanita
41	Dua	Pria
39	Dua	Pria
33	Dua	Wanita
45	Tiga	Pria
48	Tiga	Pria
42	Tiga	Wanita
46	Tiga	Pria
41	Tiga	Pria
45	Tiga	Wanita
48	Tiga	Pria
47	Tiga	Pria
42	Tiga	Wanita
41	Tiga	Pria
39	Tiga	Pria
33	Tiga	Wanita

Langkah-langkah:

a. Dari menu utama file, pilih menu new, lalu klik Data. Kemudian klik pada sheet tab Variabel View.
Pengisian variable PRODUK
o Name, sesuai kasus, ketik Produk
Pengisian Variabel SHIFT
o Name sesuai kasus ketik Shift
Values, pilihan ini untuk proses pemberian kode, dengan isian :

Kode	Label
1	Satu
2	Dua
3	Tiga

Value Labe	s		? 🛛
Value Label Value: Label: Add Change Remove	1.00 = "shift 1" 2.00 = "shift 2" 3.00 = "shift 3"		OK Cancel Heip
I			

Pengisian Variabel Gender

Value Labe	ls			<u>?</u> 🗵
Value Label Value: Label: Add Change Remove	le 1.00 = "pria" 2.00 - "warita"			OK Cancel Holp
10				

- b. Abaikan bagian yang lain kemudian tekan CTRL+T untuk pindah ke **DATA VIEW**
- c. Mengisi Data
 - 1. Isikan data sesuai data pada table
 - 2. Aktifkan value label dengan menu View kemudian klik Value Label

	Produk	Shift	Gender	
1	38.00	1.00	1.00	
2	36.00	1.00	1.00	
3	39.00	1.00	2.00	
4	34.00	1.00	1.00	
5	35.00	1.00	1.00	
Б	32.00	1.00	2.00	
7	39.00	1.00	1.00	
8	34.00	1.00	1.00	
9	32.00	1.00	2.00	
10	36.00	1.00	1.00	
11	33.00	1.00	1.00	
12	39.00	1.00	2.00	
13	45.00	2.00	1.00	
14	48.00	2.00	1.00	
15	42.00	2.00	2.00	
16	46.00	2.00	, 1.00	
\Data View / Variable View /				

- d. Pengolahan Data SPSS
 - 1. Pilih menu **Analyze**, pilih **General-Linear Model**, ketik **Univariate**. Untuk pengisiannya sesuaikan dengan gambar dibawah ini :

Univariate		
	Dependent Variable:	Model Contrasts
(Fixed Factor(s)	Plots Post Hoc
(Random Factor(s)	Save Options
(Covariale(s):	
	WLS Weight	
OK Paa	ste Reset Cancel Help	

Klik Plots

o Horizontal Axis : ... (Shift) o Separate lines : ... (gender) o Add; Shift*Gender

Univariate: Profile Plots	;		X
Factors:		Horizontal Axis:	Continue
Shilt Gender		Separate Lines:	Cancel Help
		Separate Flots:	
Plots: Add		Change Remove	
Shilt"Gonder			

Klik Post Hoc

Masukan variabel yang akan di uji MCA ... (tingkat) o Tukey

Univariate: Post	Hoc Multiple Co	mparisons for Observed A	leans 🛛 🔀
Factor(s): Shilt Gender	•	Post Hac Tests for: Shiit	Continue Cancel Help
Equal Variances A: LSD Bonferroni Sidak Schelfe R-E-G-W P R-E-G-W Q	sumed S-N-K Tukey Tukey's-b Duncan Hochberg's GT. Gabriel	Waller-Duncan Type (/Type I) Enor Ratio. Dunneti Control Category. 2 Test ② 2-sided ○ < Control ()	100 ast 💌) > Control
Equal Variances N	of Assumed	Games-Howell Dunnet	t's C

Options

Univariate: Options	
Estimated Marginal Means Factor(s) and Factor Interactions:	Display Means for:
(DVERALL) Shift Gender Shift ^a Gender	Shift'Gender
	Compare main effects
	Confidence interval adjustment:
	LSD (none)
Display Descriptive statistics Estimates of effect size Deserved power	 ✓ Homogeneity tests ✓ Spread vs. level plot ☐ Residual plot
Parameter estimates	Lack of lit
Contrast coefficient matrix	General estimable function
Significance level .05 Co	onfidence intervals are 95%
	Continue Cancel Help

Klik Ok

Tests of	Between-Subjects	Effects
----------	------------------	---------

Dependent Variable: Produk						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	530.125ª	5	106.025	7.635	.000	.560
Intercept	51574.014	1	51574.014	3713.700	.000	.992
Shift	336.111	2	168.056	12.101	.000	.447
Gender	55.125	1	55.125	3.969	.056	.117
Shift * Gender	25.000	2	12.500	.900	.417	.057
Error	416.625	30	13.887			
Total	60239.000	36				
Corrected Total	946.750	35				

a. R Squared = .560 (Adjusted R Squared = .487)

Estimated Marginal Means

Shift * Gender

Dependent Variable: Produk

				95% Confidence Interval		
Shift	Gender	Mean	Std. Error	Lower Bound	Upper Bound	
shift 1	pria	35.625	1.318	32.934	38.316	
	wanita	35.500	1.863	31.695	39.305	
shift 2	pria	44.375	1.318	41.684	47.066	
	wanita	40.500	1.863	36.695	44.305	
shift 3	pria	44.375	1.318	41.684	47.066	
	wanita	40.500	1.863	36.695	44.305	

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Produk

Tukey HSD

		Mean Difference			95% Confide	ence Interval
(I) Shift	(J) Shift	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
shift 1	shift 2	-7.5000*	1.52138	.000	-11.2506	-3.7494
	shift 3	-7.5000*	1.52138	.000	-11.2506	-3.7494
shift 2	shift 1	7.5000*	1.52138	.000	3.7494	11.2506
	shift 3	.0000	1.52138	1.000	-3.7506	3.7506
shift 3	shift 1	7.5000*	1.52138	.000	3.7494	11.2506
	shift 2	.0000	1.52138	1.000	-3.7506	3.7506

Based on observed means.

*. The mean difference is significant at the .05 level.

Homogeneous Subsets

Produk

Tukey HSD ^{a,b}					
		Subset			
Shift	Ν	1	2		
shift 1	12	35.5833			
shift 2	12		43.0833		
shift 3	12		43.0833		
Sig.		1.000	1.000		

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares

The error term is Mean Square(Error) = 13.887.

a. Uses Harmonic Mean Sample Size = 12.000.

b. Alpha = .05.

Analisis

Berdasarkan output diatas, tampak bahwa shift 2 dan shift 3 tidak terdapat perbedaan produksi yang signifikan, tetapi memiliki perbedaan yang signifikan apabila dibandingkan dengan shift 1.

BAB 5. UJI VALIDATAS DAN REALIBILITAS

DALAM penelitian, data mempunyai kedudukan yang paling tinggi, karena data merupakan penggambaran variabel yang diteliti dan berfungsi sebagai alat pembuktian hipotesis. Benar tidaknya data, sangat menentukan bermutu tidaknya hasil penelitian. Sedang benar tidaknya data, tergantung dari baik tidaknya instrumen pengumpulan data. Pengujian instumen biasanya terdiri dari uji validitas dan reliabilitas.

A. Definisi Validitas dan Reliabilitas

Validitas adalah tingkat keandalan dan kesahihan alat ukur yang digunakan. Intrumen dikatakan valid berarti menunjukkan alat ukur yang dipergunakan untuk mendapatkan data itu valid atau dapat digunakan untuk mengukur apa yang seharusnya di ukur (Sugiyono, 2004:137). Dengan demikian, instrumen yang valid merupakan instrumen yang benar-benar tepat untuk mengukur apa yang hendak di ukur.

Penggaris dinyatakan valid jika digunakan untuk mengukur panjang, namun tidak valid jika digunakan untuk mengukur berat. Artinya, penggaris memang tepat digunakan untuk mengukur panjang, namun menjadi tidak valid jika penggaris digunakan untuk mengukur berat.

Uji reliabilitas berguna untuk menetapkan apakah instrumen yang dalam hal ini kuesioner dapat digunakan lebih dari satu kali, paling tidak oleh responden
yang sama akan menghasilkan data yang konsisten. Dengan kata lain, reliabilitas instrumen mencirikan tingkat konsistensi. Banyak rumus yang dapat digunakan untuk mengukur reliabilitas diantaranya adalah rumus **Spearman Brown** :

$$r_i = \frac{2r_b}{1+r_b} \qquad r_b = \frac{N\sum XY - \sum X\sum Y}{\sqrt{\{N\sum X^2 - (\sum X)^2\}\{N\sum Y^2 - (\sum Y)^2\}}}$$

Keterangan :

r 11 adalah nilai reliabilitas r b adalah nilai koefisien korelasi

Nilai koefisien reliabilitas yang baik adalah diatas 0,7 (cukup baik), di atas 0,8 (baik). Pengukuran validitas dan reliabilitas mutlak dilakukan, karena jika instrument yang digunakan sudah tidak valid dan reliable maka dipastikan hasil penelitiannya pun tidak akan valid dan reliable. Sugiyono (2007: 137) menjelaskan perbedaan antara penelitian yang valid dan reliable dengan instrument yang valid dan reliable sebagai berikut :

Penelitian yang valid artinya bila terdapat kesamaan antara data yang terkumpul dengan data yang sesungguhnya terjadi pada objek yang diteliti. Artinya, jika objek berwarna merah, sedangkan data yang terkumpul berwarna putih maka hasil penelitian tidak valid. Sedangkan penelitian yang reliable bila terdapat kesamaan data dalam waktu yang berbeda. Kalau dalam objek kemarin berwarna merah, maka sekarang dan besok tetap berwarna merah.

Ada beberapa jenis validitas yang digunakan untuk menguji ketepatan ukuran, diantaranya validitas isi (content validity) dan validitas konsep (concept validity).

1. Validitas Isi

Validitas isi atau *content validity* memastikan bahwa pengukuran memasukkan sekumpulan item yang memadai dan mewakili yang mengungkap konsep. Semakin item skala mencerminkan kawasan atau keseluruh konsep yang diukur, semakin besar validitas isi. Atau dengan kata lain, validitas isi merupakan fungsi seberapa baik dimensi dan elemen sebuah konsep yang telah digambarkan.

Validitas muka (*face validity*) dianggap sebagai indeks validitas isi yang paling dasar dan sangat minimum. Validitas isi menunjukkan bahwa item-item yang

dimaksudkan untuk mengukur sebuah konsep, memberikan kesan mampu mengungkap konsep yang hendak di ukur.

2. Validitas Konsep

Validitas konsep atau *concept validity* menunjukkan seberapa baik hasil yang diperoleh dari pengukuran cocok dengan teori yang mendasari desain test. Hal ini dapat dinilai dari validitas konvergen dan validitas diskriminan.

Validitas konvergen terpenuhi jika skor yang diperoleh dengan dua instrument berbeda yang mengukur konsep yang sama menunjukkan korelasi yang tinggi.

Validitas diskriminan terpenuhi jika berdasarkan teori, dua variabel diprediksi tidak berkorelasi, dan skor yang diperoleh dengan mengukurnya benar-benar secara empiris membuktikan hal tersebut.

Secara umum, Sekaran (2006) membagi beberapa istilah validitas sebagai berikut:

- a. Validitas isi yaitu apakah pengukuran benar-benar mengukur konsep?
- b. Validitas muka yaitu apakah para ahli mengesahkan bahwa instrument mengukur apa yang seharusnya diukur
- c. Validitas berdasarkan criteria yaitu apakah pengukuran membedakan cara yang membantu memprediksi criteria variabel
- d. Validitas konkuren yaitu apakah pengukuran membedakan cara yang membantu memprediksi criteria saat ini ?
- e. Validitas prediktif yaitu apakah pengukuran membedakan individual dalam membantu memprediksi di masa depan ?
- f. Validitas Konsep yaitu apakah instrument menyediakan konsep sebagai teori ?
- g. Validitas konvergen yaitu apakah dua instrument mengukur konsep dengan korelasi yang tinggi ?
- h. Validitas diskriminan yaitu apakah pengukuran memiliki korelasi rendah dengan variabel yang diperkiraka tidak ada hubungannya dengan variabel tersebut ?

Akan di uji validitas dan reliabilitas variabel **kepuasan kerja**. Variabel ini berjumlah 5 indikator yang diadaptasi dari Intrinsic factor dari teori dua factor Herzberg meliputi **pekerjaan itu sendiri, keberhasilan yang diraih, kesempatan bertumbuh, kemajuan dalam karier** dan **pengakuan orang lain**.

No	X1	X2	X3	X4	X5	No	X1	X2	X3	X4	X5
1	4	4	4	4	4	19	3	3	3	3	3
2	3	3	3	3	3	20	3	3	3	3	3
3	4	4	4	4	4	21	4	3	4	3	3
4	4	4	4	3	4	22	4	3	3	3	3
5	3	3	3	3	3	23	4	4	4	4	4
6	3	3	4	3	3	24	3	3	4	4	3
7	4	4	4	4	4	25	4	3	4	4	3
8	5	4	4	4	4	26	4	4	4	4	4
9	3	4	3	3	4	27	4	4	4	4	4
10	4	4	4	4	4	28	4	4	4	4	4
11	4	4	4	4	4	29	2	2	3	2	2
12	3	3	3	3	3	30	3	3	3	3	3
13	4	4	4	3	4	31	4	4	4	4	2
14	4	4	4	4	4	32	4	4	4	3	3
15	3	3	3	4	3	33	4	4	4	4	4
16	3	4	3	4	4	34	2	3	4	4	3
17	3	3	3	3	3	35	3	3	3	4	2
18	4	4	4	4	4	36	4	3	3	3	4

Skala yang digunakan adalah skala Likert 1 – 5 dengan jumlah sampel sebanyak 36. Setelah angket ditabulasi maka diperoleh data sbb :

B. Penyelesaian

🖬 "Unti	tled1 [DataS	iet0] - SPSS	Data Editor		
File Edit	View Data	Transform A	nalyze Graph	ns Utilities A	dd-ons Window
🗁 📙	🖹 📴 🛧	🔸 🐜 🕻	A 📲 I	i 🗄 🕮	F 📎 🎯
1 : X1		4			
	X1	X2	X3	X4	X5
1	4.00	4.00	4.00	4.00	4.00
2	3.00	3.00	3.00	3.00	3.00
3	4.00	4.00	4.00	4.00	4.00
4	4.00	4.00	4.00	3.00	4.00
5	3.00	3.00	3.00	3.00	3.00
6	3.00	3.00	4.00	3.00	3.00
7	4.00	4.00	4.00	4.00	4.00
8	5.00	4.00	4.00	4.00	4.00
9	3.00	4.00	3.00	3.00	4.00
10	4.00	4.00	4.00	4.00	4.00
11	4.00	4.00	4.00	4.00	4.00
12	3.00	3.00	3.00	3.00	3.00
13	4.00	4.00	4.00	3.00	4.00
14	4.00	4.00	4.00	4.00	4.00
15	3.00	3.00	3.00	4.00	3.00

Tahap 1. Analisis Faktor

Klik Analyze - Data Reduction - Factor

Masukkan seluruh pertanyaan ke box "Variables"

	Analyze	Graphs	Utilities	Add	-ons	Winde	ow H	elp		
	Repor	ts ptive Stat	istics	•	Q	¥ @	•			
	Tables Compa Gener Gener Mixed Correl Regre Logline Classif	are Means al Linear M alized Line Models late ssion ear	nodel Podel Par Models		XE	4.00 3.00 4.00 4.00 3.00 3.00	, 	var	Va	
ם ם	Data P Scale Nonpa	Reduction arametric 1	Tests)))	Fa Co Op	ctor rrespo timal S	ndenci caling.	e Analysi	s	
	Time S Surviv Multipl Missin Compl Quality ROC C	Series val le Respon g Value Ar lex Sample y Control Curve	se nalysis es))))		4.00 4.00 3.00 4.00 4.00 3.00				
-				_						

E Factor Analysis		×
	Variables:	OK Paste Reset Cancel Help
Descriptives) Extraction	Selection Variable:	Value

Klik **Desctiptive** – Aktifkan **KMO and Bartlett's Test of Specirity** dan **Anti-Image**

Klik **Rotation** : Aktifkan **Varimax**

Statistics	Continu
Univariate descriptive	Cancel
	Help
Correlation Matrix	
Correlation Matrix	Inverse
Correlation Matrix Coefficients Significance levels	Inverse Reproduced
Correlation Matrix Coefficients Significance levels Determinant	Inverse Reproduced Anti-image

Method	A = 1	Continue
None Varimav	O Quartimax	Cancel
Deltar	O Promax Kappa 4	Help
Display ☑ Botated solutio	n 🔲 oading plot(s)	

Hasil Analisis Faktor

KMO and Bartlett's Test

Kaiser-Meyer-Olkin M Adequacy.	leasure of Sampling	.804
Bartlett's Test of	Approx. Chi-Square	85.478
Sphericity	df	10
	Sig.	.000

Anti-image Matrices

		X1	X2	Х3	X4	X5
Anti-image Covariance	X1	.448	118	149	.036	065
	X2	118	.264	075	130	190
	Х3	149	075	.506	165	.038
	X4	.036	130	165	.586	.026
	X5	065	190	.038	.026	.431
Anti-image Correlation	X1	.851 ^a	342	313	.070	148
	X2	342	754 ^a	205	330	562
	Х3	313	205	.838 ^a	303	.082
	X4	.070	330	303	.828 ^a	.052
	X5	148	562	.082	.052	782 ^a

a. Measures of Sampling Adequacy(MSA)

Nilai KMO sebesar 0.840 menandakan bahwa instumen valid karena sudah memenuhi batas 0.50 (0.840 > 0.50). Korelasi anti image menghasilkan korelasi yang cukup tinggi untuk masing-masing item, yaitu 0.851 (X1), 0.754 (X2), 0.838 (X3), 0.828 (X4) dan 0.782 (X5). Dapat dinyatakan bahwa 5 item

yang digunakan untuk mengukur konstruk kepuasan instrinsik memenuhi kriteria sebagai pembentuk konstrak.

	Extractio	on Sums of Squar	ed Loadings
Component	Total	% of Variance	Cumulative %
1	3.280	65.604	65.604

Extraction Method: Principal Component Analysis.

Output ketiga adalah Total variance Explained menunjukkan bahwa dari 5 item yang digunakan, hasil ekstraksi SPSS menjadi 1 faktor dengan kemampuan menjelaskan konstruk sebesar 65,604%.

Component Matrix^a

	Compone nt
X1	.826
X2	.914
Х3	.790
X4	.722
X5	.786

Extraction Metrod. Principal Component Analysis.

a. 1 components extracted.

Dengan melihat component matrix terlihat bahwa seluruh item meliputi pekerjaan itu sendiri (x1), keberhasilan yang diraih (x2), kesempatan bertumbuh (x3), kemajuan dalam karier (x4) dan pengakuan orang lain (x5) memiliki loading faktor yang besar yaitu di atas 0.50. Dengan demikian dapat dibuktikan bahwa 5 item valid.

Tahap 2 Pilih Analyze > Scale > Reliability Analysis

Analyze Graphs Utilities Add-ons Window Help Reports ۲ 8 🙆 🌑 **Descriptive Statistics** ٠ Tables Þ Compare Means Þ X5 var var General Linear Model Þ 4.00 Generalized Linear Models • 3.00 Mixed Models ٠ 4.00 Correlate ٠ 4.00 Regression ь 3.00 Loglinear Þ 3.00 Classify ۲ Data Reduction ۲ 4.00 Scale Reliability Analysis.. Nonparametric Tests Multidimensional Unfolding... ۲ Multidimensional Scaling (PROXSCAL)... Time Series Þ Survival Þ Multidimensional Scaling (ALSCAL)... Multiple Response ۲ 3.00 Missing Value Analysis... 4.00 Complex Samples ۲ 4.00 Quality Control ۲ ROC Curve... 3.00

Masukkan semua variabel (item 1 s/d 5) ke kotak items

Klik **Reliability Analysis**, lalu masukan varibel **X1**, **X2**, **X3**, **X4** dan **X5** ke kotak items

			Items:	OK
		•	 ✓ X2 ✓ X3 ✓ X4 ✓ X5 	Reset Cancel
Aodel:	Alpha			Statistics

Klik Kotak Statistics, lalu tandai ITEM, SCALE, dan SCALE IF ITEM DELETED pada kotak DESCRIPTIVES FOR > Continue

Reliability Analysis: Sta	itistics	
Descriptives for Item Scale Scale if item deleted	Inter-Item Correlations Covariances	Continue Cancel Help
Summaries Means Variances Covariances Correlations	ANOVA Table None F test Friedman chi-square Cochran chi-square	
Hotelling's T-square	Tukey's test of additivity	
Model: Two-Way Mixed Confidence interval: 95	Type: Consisten % Test value: 0	oy ▼

Klik OK

Maka akan tampil output sebagai berikut :

Reliability Statistics

Cronbach's	
Alpha	N of Items
.863	5

Item Statistics

	Mean	Std. Deviation	Ν
X1	3.5556	.65222	36
X2	3.5000	.56061	36
ХЗ	3.6111	.49441	36
X4	3.5278	.55990	36
X5	3.4167	.64918	36

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronba Alpha if Dele	ach's Item trd
X1	14.0556	3.425	.707		.830
X2	14.1111	3.473	.848		.794
Х3	14.0000	4.000	.665		.842
X4	14.0833	3.964	.575		.861
X5	14.1944	3.533	.658		.844
					∇

Item-Total Statistics

C. Interpretasi

1. Reliabilitas

Sekaran (dalam Zulganef, 2006) yang menyatakan bahwa suatu instrumen penelitian mengindikasikan memiliki reliabilitas yang memadai jika koefisien alpha Cronbach lebih besar atau sama dengan 0,70. Sementara hasil uji menunjukkan koef cronbach alpha sebesar 0.863, dengan demikian dapat disimpulkan bahwa variabel ini adalah reliabel.

2. Analisis Item

Dalam prosedur kontruksi atau penyusunan test, sebelum melakukan estimasi terhadap reliabilitas dan validitas, dilakukan terlebih dahulu prosedur aitem yaitu dengan menguji karakteristik masing-masing item yang akan menjadi bagian test yang bersangkutan. Aitem-aitem yang tidak memenuhi persyaratan tidak boleh diikutkan sebagai bagian dari test. Pengujian reliabilitas dan validitas hanya layak dilakukan terhadap kumpulan aitemaitem yang telah dianalisis dan diuji.

Beberapa teknik seleksi yang biasanya dipertimbangkan dalam prosedur seleksi adalah koefisien korelasi item-total, indeks reliabilitas item, dan indeks validitas item. Pada tes yang dirancang untuk mengungkap abilitas kognitif dengan format item pilihan ganda, masih ada karakteristik item yang seharusnya juga dianalisis seperti tingkat kesukaran item dan efektivitas distraktor.

Salah satu parameter fungsi pengukuran item yang sangat penting adalah statistic yang memperlihatkan kesesuaian antara fungsi item dengan fungsi tes secara keseluruhan yang dikenal dengan istilah konsistensi item-total. Dasar kerja yang digunakan dalam analisis item dalam hal ini adalah memilih item-item yang fungsi ukurnya sesuai dengan fungsi ukur test seperti dikehendaki penyusunnya. Dengan kata lain adalah memilih item yang mengukur hal yang sama dengan apa yang diukur oleh tes secara keseluruhan.

Pengujian keselarasan fungsi item dengan fungsi ukur tes dilakukan dengan menghitung koefisien korelasi antara distribusi skor pada setiap item dengan distribusi skor toral tes itu sendiri. Prosedur ini akan menghasilkan koefisien korelasi item total (r it) yang juga dikenal dengan sebutan parameter daya beda item.

3. Tentang Cronbach Alpha

Cronbach's alpha is a measure of internal consistency, that is, how closely related a set of items are as a group. A "high" value of alpha is often used (along with substantive arguments and possibly other statistical measures) as evidence that the items measure an underlying (or latent) construct. However, a high alpha does not imply that the measure is unidimensional. If, in addition to measuring internal consistency, you wish to provide evidence that the scale in question is unidimensional, additional analyses can be performed. Exploratory factor analysis is one method of checking dimensionality. Technically speaking, Cronbach's alpha is not a statistical test – it is a coefficient of reliability (or consistency).

Didasarkan pada penjelasan di atas, maka penggunaan cronbach alpha bukanlah satu-satunya pedoman untuk menyatakan instrumen yang digunakan sudah reliabel. Untuk mengecek unidimensional pertanyaan diperlukan analisis tambahan yaitu ekplanatory factor analysis.

4. Teknik Yang Lebih Akurat Untuk Mengukur Validitas dan Reliabilitas

Untuk teknik yang lebih akurat untuk menguji validitas dan reliabilitas adalah analisis faktor konfirmatory. Menurut **Joreskog dan Sorbom (1993)**, CFA digunakan untuk menguji "*theoritical or hypotesical concepts, or contruct, or variables, which are not directly measurable or observable*".

Penjelasan Hair, dkk (2006) mengenai CFA adalah :

"CFA is way of testing how well measured variables represent a smaller number of contruct...CFA is used to provide a confirmatory test of our measurement theory. A Measurement theory specifies how measured variables logically and systematically represent contruct involved in a theoretical model. In Order words, measurement theory specifies a series relationships that suggest how variables represent a latent contruct that is non measured directly" (dalam Kusnendi, 2008:97).

BAB 6. NORMALITAS DAN OUTLIER

NORMALITAS DATA

POLA sebaran data sangat penting diperhitungkan untuk menentukan jenis analisis statsitika yang digunakan. Data dikatakan menyebar normal jika populasi data memenuhi kriteria:

68.27% data berada di sekitar Mean ± 1 σ (standard deviasi) 95.45% data berada di sekitar Mean ± 2 σ (standard deviasi) 99.73% data berada di sekitar Mean ± 3 σ (standard deviasi) Dan sisanya di luar range tersebut.

Metode statistika yang mengharuskan terpenuhinya asumsi normalitas disebut **Statistika Parametrik,** Sedangkan metode statistika yang digunakan untuk data tidak berdistribusi normal disebut **Statistika Nonparametrik**.

Hipotesis yang menandakan asumsi normalitas adalah:

- H_0 : Data menyebar normal
- H₁ : Data tidak menyebar normal

Cara menguji Normalitas data dapat dilakukan secara visual maupun uji yang relevan. Secara visual, uji normalitas dilakukan dengan:

KABUPATEN	Pertanian	Industri	Jasa	PDRB
Bodronoyo	5194485.32	5218350.93	5258136.5	15670972.75
Sulamanto	2762729.18	2997818.9	3178586.96	8939135.04
Ciganjur	2911111.03	2974994.19	3038805.78	8924911.01
Bandungan	4338609.02	4436742.73	4534050.73	13309402.49
siGarut	3566959.43	3631799.79	3713444.29	10912203.51
Tasikmala	2886454.78	2920347.31	2970956	8777758.08
Ciamis	3236120.65	3305451.54	3416380.69	9957952.89
Kuning	2635535.23	2738240.12	2819521.59	8193296.93
Carubon	2580728.25	2671645.91	2742543.13	7994917.28
Malengka	2445604.05	2558835.15	2625150.66	7629589.86

Tabel 6.1. PDRB dari 10 kabupaten/kota di propinsi HORE

Sumber : data hipotesis

1. Tuliskan data PDRB kedalam SPSS, sehingga didapatkan hasil sbb:

File	Edit	View	Data	Trans
Þ		e [ð 🔸	•
9:				
		PD	RB	1
	1	1567	70973	
	2	893	39135	
	3	892	24911	
	4	1330	9402	
	5	1091	2204	
	6	877	7758	
	- 7	995	57953	
	8	819	93297	
	9	799	94917	
	10	762	29590	
	4.4			

2. Pada menu utama SPSS pilih **Analyze** → **Descriptives statistics** → **Explore** sehingga muncul Dialog Box seperti pada gambar dibawah ini.

Masukan **PDRB** ke dependend list

Explore		×
	•	Dependent List: OK PDRB Paste Reset
	F	Factor List: Cancel Help
	×	Label Cases by:
Both O Statistics O Plots		Statistics Plots Options

3. Isi kolom **Dependent List** dengan variabel **PDRB** Pada **Display** pilih **Plots,** Kemudian Klik **Plots,** sehingga muncul Dialog Box seperti dibawah ini.

Societar levels together	Descriptive	Continue
Dependents together		Cancel
None		Help
None		
And the second sec		
Power estimation		
 Power estimation Transformed Power 	Natural log	

- 4. Pada Menu **Boxplots**, pilih **Factors levels together**, kemudian cek list pada **Normality plots with tests**. Pilih **Continue → OK**
- 5. Selanjutnya akan muncul output seperti ini

	Kolmogorov-Smirnov ^a			Shapiro-W ilk		
	Statistic	df	Sig.	Statistic	df	Sig.
PDRB	.263	10	.048	.829	10	.033

Tests of Normality

a. Lilliefors Significance Correction

Analisis:

Output pada Gambar, merupakan output uji normalitas. Ada dua uji yang muncul, yaitu **Kolmogorov Smirnov Test** dan **Shapiro Wilk Test**. Adapun kriteria pengujiannya adalah:

- a. Jika Nilai Signifikansi pada kolmogorov Smirnov < 0.05, data tidak menyebar normal.
- b. Jika nilai Signifikansi pada Kolmogorov Smirnov > 0.05, maka data menyebar normal.

Demikian juga kriteria yang berlaku pada Saphiro Wilk test. Pada output yang diuji pada data **PDRB**, dapat dilihat bahwa nilai signifikansi pada kedua uji < 0.05 (0.048 dan 0.033). Sehingga dapat disimpulkan bahwa data **PDRB** tidak menyebar normal dan tidak dapat dilakukan analisis lebih lanjut dengan menggunakan statistika parametrik.

6. Output selanjutnya yaitu seperti yang muncul pada dibawah ini.

Normal Q-Q Plot of PDRB

Analisis:

Normal Q-Q Plot dapat digunakan sebagai alat pengujian normalitas secara visual. Kriterianya adalah, jika titik-titik pengamatan berada di sekitar garis diagonal, maka dapat disimpulkan bahwa **data menyebar normal**. Seperti terlihat pada gambar, titik-titik pengamatan tidak berada di sekitar Garis Diagonal sehingga secara visual dapat dikatakan bahwa data **PDRB** tidak menyebar normal. Namun pengujian secara visual ini harus tetap didukung dengan uji **Kolmogorov Smirnov** ataupun **Saphiro Wilk**.

7. Output terakhir yang muncul adalah Box Plot. Garis tengah horizontal Box Plot adalah letak Median, sedangkan dua garis lainnya adalah letak Quartil 1 dan Quartil 3. Titik yang berada di luar Box Plot merupakan pengamatan yang berada jauh dari rata-rata atau disebut dengan Outlier. Terkadang outlier menyebabkan hasil analisis menjadi bias karena keunikannya. Oleh karena itu, dalam berbagai penelitian, outlier disarankan untuk dibuang.

a. Transformasi Data

Penelitian dapat dilanjutkan dengan menggunakan metode Statistika Parametrik jika diketahui data menyebar normal. Namun akan muncul pertanyaan, bagaimana jika setelah diuji ternyata data tidak menyebar normal?

Data yang tidak menyebar normal perlu ditransformasi terlebih dahulu. Langkah untuk mentransformasi data dalam SPSS adalah:

- 1. Buka data PDRB (bahwa data PDRB tidak menyebar normal).
- 2. Pilih menu **Transform → Compute Variable** sehingga muncul Dialog Box seperti gambar dibawah ini.

Farget Variable:	Numeric Expression:	
LNPDRB	= LN(PDRB)	~
Type & Label		
PDRB	Function group:	
	+ <	ICDF
	LN(numexpr). Numeric. Returns the base-e logarithm of numexpr, which must be numeric and greater than 0. Index[1] Index[2] Lag[1] Lag[2] Lag[1] Lag[2] Length Lg10 Lngamma	cial Variables
If (optional case s	election condition)	~

- 3. **Target Variable** merupakan kolom yang akan digunakan untuk data hasil transformasi. **Targer Variable** dapat diberi nama apapun. Untuk keseragaman, isi dengan nama **LNPDRB**.
- 4. Pilih **All** pada **Function Group**, kemudian pilih **Ln** pada **Functions and Special Variables** dengan cara *double click*. Selanjutnya masukkan variabel **PDRB** pada kotak **Numeric Expression** → **OK**.
- 5. Output yang dihasilkan adalah berupa kolom baru pada **Data View**, seperti dibawah ini, Kolom tersebut adalah data hasil transformasi yang akan dianalisis lebih lanjut.

	PDRB	LNPDRB
1	15670973	16.57
2	8939135	16.01
3	8924911	16.00
4	13309402	16.40
- 5	10912204	16.21
6	8777758	15.99
7	9957953	16.11
8	8193297	15.92
9	7994917	15.89
10	7629590	15.85
11		

Kolom Transformed Variable

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
LNPDRB	.248	10	.081	.880	10	.131

a. Lilliefors Significance Correction

Dapat dilihat bahwa nilai signifikansi pada kedua uji > 0.05 (0.081 dan 0.131). Sehingga dapat disimpulkan bahwa data LN**PDRB** menyebar normal dan tidak dapat dilakukan analisis lebih lanjut dengan menggunakan statistika parametrik.

Normal Q-Q Plot of LNPDRB

b. Deteksi Outlier

Outlier adalah pengamatan yang memiliki simpangan yang cukup jauh dari rata-rata. Cara untuk mendeteksi outlier sangat tergantung pada tingkatan analisis data, apakah tergolong analisis data univariate, bivariate, atau multivariate. Pada bab ini akan dibahas deteksi outlier pada data univariate. Deteksi dari secara visual telah dibahas sebelumnya yaitu dengan menggunakan **Box Plot.** Cara lain adalah melalui nilai *z-score.*

Langkah-langkahnya adalah sebagai berikut:

1. Buka file yang berisi **PDRB** tersebut, Pilih **Analyze** → **Descriptive Statistics** → **Descriptives**

Descriptives memunculkan nilai Zscore

Masukkan variabel PDRB pada kolom Variable(s), kemudian cek list Save standardized values as variables → OK. Output akan muncul berupa kolom baru pada sheet Data View.

	PDRB	LNPDRB	ZPDRB
1	15670973	16.57	2.17324
2	8939135	16.01	42073
3	8924911	16.00	42621
4	13309402	16.40	1.26326
5	10912204	16.21	.33955
6	8777758	15.99	48292
7	9957953	16.11	02815
8	8193297	15.92	70813
9	7994917	15.89	78457
10	7629590	15.85	92534
4.4	1		

- 3. Z kredit adalah nilai z-score dari masing-masing pengamatan. Kriteria penentuan outlier dipengaruhi oleh banyaknya sampel, yaitu :
 - Jika banyaknya sampel ≤ 80, maka pengamatan dengan Zscore > 2.5 atau < -2.5 adalah outlier
 - Jika banyaknya sampel > 80. Maka pengamatan dengan Zscore >3 atau <
 -3 adalah outlier (Hair,dkk, 1998)

BAB 7. ANALISIS REGRESI

ANALISIS Regresi linier (*Linear Regression analysis*) adalah teknik statistika untuk membuat model dan menyelidiki pengaruh antara satu atau beberapa variabel bebas (*Independent Variables*) terhadap satu variabel respon (*dependent variable*). Ada dua macam analisis regresi linier:

- 1. Regresi Linier Sederhana: Analisis Regresi dengan satu *Independent variable*, dengan formulasi umum: $Y = a + b_1X_1 + e$ (9.1)
- 2. Regresi Linier Berganda: Analisis regresi dengan dua atau lebih *Independent Variable*, dengan formulasi umum:

$$Y = a + b_1 X_1 + b_2 X_2 + \dots + b_n X_n + e$$

Dimana:

Y = Dependent variable

- b_1 = koefisien regresi X₁, b_2 = koefisien regresi X₂, dst.
- e = Residual / Error

Fungsi persamaan regresi selain untuk memprediksi nilai *Dependent Variable* (Y), juga dapat digunakan untuk mengetahui arah dan besarnya pengaruh *Independent Variable* (X) terhadap *Dependent Variable (Y)*.

(9.2)

Menurut Gujarati (2006), suatu model statistik dapat dikatakan sebagai model yang baik apabila memenuhi beberapa kriteria berikut :

- 1. Parsemoni. Suatu model tidak akan pernah dapat secara sempurna menangkap realitas sehingga hal ini menjadi urgensi bagi kita untuk melakukan sedikit abstraksi atau penyederhanaan dalam pembuatan model. Maksudnya, ketikdakmampuan model kita dalam mencakup semua realitas yang ada itu menjadikan kita harus berfokus membuat model khusus untuk menjelaskan realitas yang menjadi tujuan penelitian kita saja.
- 2. Mempunyai identifikasi tinggi. Artinya dengan data yang tersedia, parameter-parameter yang diestimasi memiliki nilai yang unik (tunggal, berdiri sendiri) sehingga hanya akan ada satu parameter saja.
- 3. Keselarasan atau *Goodness of fit*. Khusus untuk analisis regresi, ialah menerangkan sebanyak mungkin variasi variabel terikat dengan menggunakan variabel bebas dalam model. Oleh karena itu, suatu model dikatakan baik jika indikator pengukur kebaikan model, yaitu *adjusted R square* bernilai tinggi.

Asumsi yang harus terpenuhi dalam analisis regresi (Gujarati, 2003)adalah:

- 1. Residual menyebar normal (asumsi normalitas)
- 2. Antar Residual saling bebas (Autokorelasi)
- 3. Kehomogenan ragam residual (Asumsi Heteroskedastisitas)
- 4. Antar Variabel independent tidak berkorelasi (multikolinearitas)

Asumsi-asumsi tersebut harus diuji untuk memastikan bahwa data yang digunakan telah memenuhi asumsi analisis regresi.

1. Input data **Keuntungan, Penjualan dan Biaya Promosi** dalam file SPSS. Definisikan variabel-variabel yang ada dalam sheet **Variable View**.

Periode	Keuntungan	Penjualan	Biaya Promosi
202101	100000	1000000	55000
202102	110000	1150000	56000
202103	125000	1200000	60000
202104	131000	1275000	67000
202105	138000	1400000	70000
202106	150000	1500000	74000
202107	155000	1600000	80000
202108	167000	1700000	82000
202109	180000	1800000	93000

Periode	Keuntungan	Penjualan	Biaya Promosi
202110	195000	1900000	97000
202111	200000	2000000	100000
202112	210000	2100000	105000
202201	225000	2200000	110000
202202	230000	2300000	115000
202203	240000	2400000	120000
202204	255000	2500000	125000
202205	264000	2600000	130000
202206	270000	2700000	135000
202207	280000	2800000	140000
202208	290000	2900000	145000
202209	300000	3000000	150000
202210	315000	3100000	152000
202211	320000	3150000	160000
202212	329000	3250000	165000
202301	335000	3400000	170000
202302	350000	3500000	175000
202303	362000	3600000	179000
202304	375000	3700000	188000
202305	380000	3800000	190000
202306	400000	3850000	192000
202307	405000	3950000	200000
202308	415000	4100000	207000
202309	425000	430000	211000
202310	430000	4350000	215000
202311	440000	4500000	219000
202312	450000	4600000	210000

Sumber : Data Hipotesis

	Periode	Keuntungan	Penjualan	Promosi
1	2021.01	100000.00	1000000.00	55000.00
2	2021.02	110000.00	1150000.00	56000.00
3	2021.03	125000.00	1200000.00	60000.00
4	2021.04	131000.00	1275000.00	67000.00
5	2021.05	138000.00	1400000.00	70000.00
6	2021.06	150000.00	1500000.00	74000.00
7	2021.07	155000.00	1600000.00	80000.00
8	2021.08	167000.00	1700000.00	82000.00
9	2021.09	180000.00	1800000.00	93000.00
10	2021.10	195000.00	1900000.00	97000.00
11	2021.11	200000.00	2000000.00	100000.00
12	2021.12	210000.00	2100000.00	105000.00
13	2022.01	225000.00	2200000.00	110000.00
14	2022.02	230000.00	2300000.00	115000.00
15	2022.03	240000.00	2400000.00	120000.00
16	2022.04	255000.00	2500000.00	125000.00
17	2022.05	264000.00	2600000.00	130000.00
18	2022.06	270000.00	2700000.00	135000.00
19	2022.07	280000.00	2800000.00	140000.00
20	2022.08	290000.00	2900000.00	145000.00
21	2022.09	300000.00	3000000.00	150000.00
22	2022.10	315000.00	3100000.00	152000.00
23	2022 11	320000-00	3150000-00	160000 00

Masukan data diatas ke dalam program SPSS, sehingga akan seperti tampilan dibawah ini,

- Pilih Menu Analyze → Regression → Linear , sehingga muncul Dialog Box sesuai dibawah ini Masukkan variabel Kredit pada kolom Dependent Variable, dan tiga variabel lain sebagai Independent(s),
- **88** Aplikasi Statistik Dengan SPSS

	Analyze	Graphs	Utilities	Add	l-ons W	/ind	ow Help	
	Report Descrit Tables Compa Gener Gener Mixed	ts ptive Stat ; are Means al Linear M alized Line Models =to	istics : Aodel :ar Models	* * * * * * * *	var	2	yar	V
ŝ	Regre	ace ssion		Þ	Linea	r		L
) 	Loglinear Classify Data Reduction Scale Nonparametric Tests		Loglinear Classify Data Reduction Scale Nonparametric Tests Time Series		Curve Binar Multir Ordin Probi	∍ Es y Lo nomi ial	timation gistic al Logistic	
	Surviv Multipl Missing Comple Qualty	al le Respon g Value Ar ex Sample y Control	se halysis es	, , , ,	Nonli Weig 2-Sta Optin	 stimation .cast Squares .caling		
2	RDCC	lurve						

Linear Regression		×
Periode Penjualan Promosi	Dependent: Comparison of 1 Previous Next Independent(s): Penjualan Promosi Method: Enter	OK Paste Reset Cancel Help
	Selection Variable: Rule Case Labels: WLS Weight: Statistics Plots Save Opti	ons

3. Pilih **Statistics**, cek list **Estimates**, **Collinearity Diagnostics**, dan **Durbin Watson →Continue**

Linear Regression: Stat	tistics	
Regression Coefficients	 Model fit R squared change Descriptives Part and partial correlations Collinearity diagnostics 	Continue Cancel Help
Residuals		
🗹 Durbin-Watson		
Casewise diagnostics		
 Outliers outside: All cases 	3 standard deviations	

4. Pilih **Plots**, cek List **Normal Probability Plot → Continue**,

Linear Regression:	Plots	×
DEPENDINT *2PRED *2RESID *2RESID *2RESID *ADJPRED *SDRESID Standardized Residua ↓ Histogram ♥ Normal probability p	catter 1 of 1 Previous Y: X: Plots Produce all partial plots	Continue Cancel Heb

5. Pilih Save, cek list Unstandardized dan Studentized deleted Residuals,

Linear Regression: Save		
Predicted Values Unstandardized Standardized Adjusted S.E. of mean predictions Distances Mahalanobis Cook's Leverage values Prediction Intervals Mean Individual Confidence Interval: 95 %	Residuals Unstandardized Standardized Studentized Deleted Studentized deleted Influence Statistics DfBeta(s) Standardized DfBeta(s) DfFit Standardized DfFit Covariance ratio	Continue Cancel Help
Coefficient statistics Create coefficient statistics Create a new dataset Dataset name; Write a new data file		

6. Continue → OK,

7. Langkah pertama yang harus dilakukan adalah membuang data outlier sehingga hasil output analisis yang dihasilkan tidak lagi terpengaruh oleh pengamatan yang menyimpang,

a. Uji Outlier

Perhatikan pada sheet **Data View** kita, maka kita akan temukan dua variabel baru, yaitu RES_1 (Residual) dan SDR (Studentized deleted Residual),

	Periode	Keuntungan	Penjualan	Promosi	RES_1	SDR_1
1	2021.01	100000.00	1000000.00	55000.00	-3501,56282	-,88997
2	2021.02	110000.00	1150000.00	56000.00	-3337,95445	-,84592
3	2021.03	125000.00	1200000.00	60000.00	5385,67299	1,37157
4	2021.04	131000.00	1275000.00	67000.00	1153,59360	,28444
5	2021.05	138000.00	1400000.00	70000.00	-1814,69395	-,44634
6	2021.06	150000.00	1500000.00	74000.00	902,64313	,22160
7	2021.07	155000.00	1600000.00	80000.00	-5015,06089	-1,24943
8	2021.08	167000.00	1700000.00	82000.00	-662,68271	-,16376
9	2021.09	180000.00	1800000.00	93000.00	-2667,98947	-,65139
10	2021.10	195000.00	1900000.00	97000.00	3049,34761	,74185
11	2021.11	200000.00	2000000.00	100000.00	-415,79476	-,10000
12	2021.12	210000.00	2100000.00	105000.00	-515,97823	-,12385
13	2022.01	225000.00	2200000.00	110000.00	4383,83830	1,06873
14	2022.02	230000.00	2300000.00	115000.00	-716,34517	-,17144
15	2022.03	240000.00	2400000.00	120000.00	-816,52864	-,19522
16	2022.04	255000.00	2500000.00	125000.00	4083,28789	,98971
17	2022.05	264000.00	2600000.00	130000.00	2983,10442	,71759
18	2022.06	270000.00	2700000.00	135000.00	-1117,07905	-,26683
19	2022.07	280000.00	2800000.00	140000.00	-1217,26252	-,29086
20	2022.08	290000.00	2900000.00	145000.00	-1317,44598	-,31502
21	2022.09	300000.00	300000.00	150000.00	-1417,62945	-,33932
22	2022.10	315000.00	3100000.00	152000.00	5934,74872	1,47180
23	2022 11	320000 00	3150000 00	160000.00	1388,29397	,33730

Variabel Baru yang terbentuk

SDR adalah nilai-nilai yang digunakan untuk mendeteksi adanya outlier, Dalam deteksi outlier ini kita membutuhkan tabel distribusi t, Kriteria pengujiannya adalah jika nilai absolute $|\text{SDR}| > t_{n-k-1}^{\alpha/2}$, maka pengamatan tersebut merupakan outlier,

n = Jumlah Sampel, dan k = Jumlah variabel bebas

92 – Aplikasi Statistik Dengan SPSS

Nilai t pembanding adalah sebesar 2,056, Pada kolom SDR, terdapat 1 pengamatan yang memiliki nilai |SDR| > 2,056, yaitu pengamatan ke 17, Berikut ini adalah outputnya,

	Model Summary [®]							
Model	R	R Square	Ad justed R Square	Std Error of the Estimate	Durbin Watson			
1	,999 ^a	,999	,998	4186,51013	1,641			
a. Predictors: (Constant), Promosi, Penjualan								

b. Dependent Variable: Keuntungan

Analisis:

b. R Square sebagai ukuran kecocokan model

Tabel Variables Entered menunjukkan variabel independent yang dimasukkan ke dalam model, Nilai R Square pada Tabel Model Summary adalah prosentase kecocokan model, atau nilai yang menunjukkan seberapa besar variabel independent menjelaskan variabel dependent, R² pada persamaan regresi rentan terhadap penambahan variabel independent, dimana semakin banyak variabel Independent yang terlibat, maka nilai R² akan semakin besar, Karena itulah digunakan R² *adjusted* pada analisis regresi linier Berganda, dan digunakan R² pada analisis regresi sederhana, Pada gambar output 4,6, terlihat nilai R Square adjusted sebesar 0,999, artinya variabel independent dapat menjelaskan variabel dependent sebesar 99,8%, sedangkan 0,2% dijelaskan oleh faktor lain yang tidak terdapat dalam model,

c.Uji F

Uji F dalam analisis regresi linier berganda bertujuan untuk mengetahui pengaruh variabel independent secara simultan, yang ditunjukkan oleh **dalam table ANOVA**,

ANOVA(b)

				Mean Square		
	Model	Sum of Squares	df	-	F	Sig
1	Regression	394212835607,795	2	197106417803,898	N1245.958	,000(a)
	Residual	578386614,427	33	17526867,104		
	Total	394791222222,222	35			

a Predictors: (Constant), Promosi, Penjualan

b Dependent Variable: Keuntungan

Rumusan hipotesis yang digunakan adalah:

- H₀ Kedua variabel independent secara simultan tidak berpengaruh signifikan terhadap variabel Jumlah Kemiskinan,
- H₁ Kedua variabel independent secara simultan berpengaruh signifikan terhadap variabel Jumlah Kemiskinan,

Kriteria pengujiannya adalah:

Jika nilai signifikansi > 0,05 maka keputusannya adalah terima H_0 atau variable independent secara simultan tidak berpengaruh signifikan terhadap variabel dependent

Jika nilai signifikansi < 0,05 maka keputusannya adalah tolak H_0 atau variabel dependent secara simultan berpengaruh signifikan terhadap variabel dependent,

Berdasarkan kasus, Nilai **Sig**, yaitu sebesar 0,000, sehingga dapat disimpulkan bahwa Promosi dan penjualan secara simultan berpengaruh signifikan terhadap Besarnya Keuntungan

d. Ujit

Uji t digunakan untuk mengetahui pengaruh masing-masing variabel independent secara parsial, ditunjukkan oleh Tabel **Coefficients** pada berikut ini:

				econteionte				
		Unstandardized		Standardized Coefficients			Collinearity	Statistics
Model		В	Std Error	Beta	t	Sig	olerance	VIF
1	(Constant)	-1587,875	2093,274		-,759	,453		
	Penjualan	,060	,009	,602	6,344	,000	,005	202,913
	Promosi	,818,	,195	,398	4,191	,000	,005	202,913
a. D	ependent Varia	bla: Keuntung	an					

Coofficiente

Rumusan hipotesis yang digunakan adalah:

- $H_{0} : \qquad \mbox{Penjulan tidak mempengaruhi besarnya Jumlah Keuntungan secara signifikan }$
- H₁: Penjualan mempengaruhi besarnya Jumlah Keuntungan secara signifikan

Hipotesis tersebut juga berlaku untuk variabel Inflasi, Perhatikan nilai **Unstandardized coefficients B** untuk masing-masing variabel, Variabel Penjualan mempengaruhi Jumlah Keuntungan yang disalurkan sebesar 0,06, Nilai ini positif artinya semakin besarnya Penjualan, maka semakin besar pula jumlah keuntungan, artinya jika penjualan naik sebesar 1000 satuan maka keuntungan akan naik sebesar 60 satuan Demikian juga variabel Promosi berpengaruh positif terhadap jumlah Keuntungan sebesar 0,818, artimya jika promosi naik 1000 satuan maka keutungan akan naik sebesar 818 satuan

Signifikansi pengaruh variabel independent terhadap variabel dependent dapat dilihat dari nilai **Sig** pada kolom terakhir, Nilai signifikansi untuk variabel Penjualanyaitu sebesar 0,000, artinya variabel ini berpengaruh secara signifikan terhadap Jumlah Keuntungan, Hal ini berlaku juga untuk variabel promosi, dimana nilai signifikansinya < 0,05, sehingga kesimpulannya adalah ditolaknya H₀ atau dengan kata lain Penjualan dan Promosi mempunyai pengaruh signifikan terhadap Jumlah Keuntungan,

Dengan Model Ln

Compute Variable		×
Target Variable: InKeuntungan	Numeric Expression: = LN(Keuntungan)	
Type & Label		-
Periode Keuntungan Perijualan Promosi Unstandardized Reside Studentized Deleted F	Function group:	× III
	LN(numexpr). Numeric: Returns the base end logarithm of numexpr, which must be numeric and greater than 0. Equation 1 and 1 a	ables:
[f] (optional case sele	tion condition)	Ŧ
	OK Paste Reset Cancel Help	

💷 Compute Variable		×
Target Variable:	Numeric Expression:	
InPenjualan	= LN(Penjualan)	~
Type & Label		~
Periode	Function group:	
 Keuntungan Penjualan Promosi Unstandardized Residi Studentized Deleted F InKeuntungan 		• 11
		Ŧ
	LN(numexpr). Numeric. Returns the base-e 🔺 Functions and Special Varia	bles:
	loganthm of numexpr, which must be numeric and greater than 0. Lag(2) Length Lg10 Ingamma Lower	^
f (optional case sele	Lower Lpad(1) Lpad(2) Ltrim(1) Ltrim(2) Max	Ŧ
C	OK Paste Reset Cancel Help	

Compute Variable		×
Target Variable:	Numeric Expression:	
InPromosi	= LN(Promosi)	*
Type & Label	Function among	-
 ✓ Keuntungan ✓ Penjualan ✓ Promosi ✓ Unstandardized Residi ✓ Studentized Deleted F ✓ InKeuntungan ✓ InPenjualan 		
	LN(numexpr). Numeric. Returns the base-e logarithm of numexpr, which must be numeric and greater than 0. Lag(1) Lag(1) Lag(2) Length Lg 10 Lngarma	riables:
f (optional case select	ction condition)	-
C	OK Paste Reset Cancel Help	

InKeuntungan	InPenjualan	InPromosi
11,61	13,96	10,93
11,74	14,00	11,00
11,78	14,06	11,11
11,84	14,15	11,16
11,92	14,22	11,21
11,95	14,29	11,29
12,03	14,35	11,31
12,10	14,40	11,44
12,18	14,46	11,48
12,21	14,51	11,51
12,25	14,56	11,56
12,32	14,60	11,61
12,35	14,65	11,65
12,39	14,69	11,70
12,45	14,73	11,74
12,48	14,77	11,78
12,51	14,81	11,81
12,54	14,85	11,85
12,58	14,88	11,88
12,61	14,91	11,92
12,66	14,95	11,93
12,68	14,96	11,98
12,70	14,99	12,01
12,72	15,04	12,04
12,77	15,07	12,07
12,80	15,10	12,10
12,83	15,12	12,14
12,85	15,15	12,15
12,90	15,16	12,17
12,91	15,19	12,21
12.04	15 00	40.04

Model Summary^b

				Adjusted Std Error of		Durbin-
Model	R	R Square		R Square	the Estimate	Watson
1	,999 ^a		,999	,998	,01685	1,812

a. Predictors: (Constant), InPromosi, InPenjualan

b. Dependent Variable: InKeuntungan

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig
1	Regression	6,562	2	3,281	11560,184	,000ª
	Residual	,009	33	,000		
	Total	6,571	35		ſ	

a. Predictors: (Constant), InPromosi, InPenjualan

b. Dependent Variable: InKeuntungan

Coefficients^a

	Unstandardized Coefficients		lardized icients	Standardiz ed Coefficients			Collinearity	Statistics
Mod	el	В	Std Error	Beta	t	Sig	Tolerance	VIF
1	(Constant)	-1,420	,314		-4,527	,000		
	InPenjualan	,664	,111	,662	5,971	,000	,004	284,794
	InPromosi	,347	,114	,337	3,043	,005	,004	284,794
a Dependent Variable: InKountungan								

a Dependent Variable: InKeuntungan

Analisis

Dari data diatas persamaan regresi dapat disusun sebagai berikut : LnKeuntungan = b0 + b1 lnPenjualan + b2 lnPromosi + e

Atau

LnKeuntungan = antiln (-1,420) + 0,664 lnPenjualan + 0,347InPromosi + e

Baik variable Penjualan maupun Promosi memiliki pengaruh terhadap Keuntungan R Square 0,999 artinya variable Promosi dan Penjualan 99,9 persen dapat menjelaskan terhadap variable terikat (keuntungan) dan sisanya 0,1 persen dijelaskan oleh variable diluar model

BAB 8. UJI ASUMSI KLASIK

DIKETAHUI data keuntungan, Penjualan dan Biaya Promosi di suatu perusahaan periode Januari 2022 sampai Juli 2023 sebagai brikut :

No	Periode	Keunt	Penjualan	Biaya Promosi	No	Periode	Keunt	Penjualan	Biaya Promosi
1	202201	100000	1000000	55000	19	201307	280000	2800000	140000
2	202202	110000	1150000	56000	20	201308	290000	2900000	145000
3	202203	125000	1200000	60000	21	201309	300000	3000000	150000
4	202204	131000	1275000	67000	22	201310	315000	3100000	152000
5	202205	138000	1400000	70000	23	201311	320000	3150000	160000
6	202206	150000	1500000	74000	24	201312	329000	3250000	165000
7	202207	155000	1600000	80000	25	201401	335000	3400000	170000
8	202208	167000	1700000	82000	26	201402	350000	3500000	175000
9	202209	180000	1800000	93000	27	201403	362000	3600000	179000
10	202210	195000	1900000	97000	28	201404	375000	3700000	188000
11	202211	200000	2000000	100000	29	201405	380000	3800000	190000
12	202212	210000	2100000	105000	30	201406	400000	3850000	192000
13	202301	225000	2200000	110000	31	201407	405000	3950000	200000
14	202302	230000	2300000	115000	32	201408	415000	4100000	207000
15	202303	240000	2400000	120000	33	201409	425000	4300000	211000
16	202304	255000	2500000	125000	34	201410	430000	4350000	215000

Agus Tri Basuki – 99
No	Periode	Keunt	Penjualan	Biaya	No	Periode	Keunt	Penjualan	Biaya
				Promosi					Promosi
17	202305	264000	2600000	130000	35	201411	440000	4500000	219000
18	202306	270000	2700000	135000	36	201412	450000	4600000	210000

Sumber: data hipotesis

UJI ASUMSI KLASIK ANALISIS REGRESI

a. Uji Normalitas

Uji normalitas berguna untuk menentukan data yang telah dikumpulkan berdistribusi normal atau diambil dari populasi normal Metode klasik dalam pengujian normalitas suatu data tidak begitu rumit Berdasarkan pengalaman empiris beberapa pakar statistik, data yang banyaknya lebih dari 30 angka (n > 30), maka sudah dapat diasumsikan berdistribusi normal Biasa dikatakan sebagai sampel besar

Namun untuk memberikan kepastian, data yang dimiliki berdistribusi normal atau tidak, sebaiknya digunakan uji statistik normalitas Karena belum tentu data yang lebih dari 30 bisa dipastikan berdistribusi normal, demikian sebaliknya data yang banyaknya kurang dari 30 belum tentu tidak berdistribusi normal, untuk itu perlu suatu pembuktian uji statistik normalitas yang dapat digunakan diantaranya **Chi-Square, Kolmogorov Smirnov, Lilliefors, Shapiro Wilk, Jarque Bera**

Salah satu cara untuk melihat normalitas adalah secara visual yaitu melalui **Normal P-P Plot**, Ketentuannya adalah jika titik-titik masih berada di sekitar garis diagonal maka dapat dikatakan bahwa residual menyebar normal,

Dependent Variable: Keuntungan

Namun pengujian secara visual ini cenderung kurang valid karena penilaian pengamat satu dengan yang lain relatif berbeda, sehingga dilakukan **Uji Kolmogorov Smirnov** dengan langkah-langkah:

 Pilih Analyze → Descriptives → Explore, Setelah muncul Dialog Box seperti pada Gambar 8,1, masukkan variabel Unstandardized residual pada kolom Dependent List, Pilih Plots kemudian Cek list Box Plot dan Normality plots with test → OK (Gambar 8.2)

Gambar 8.1

Explore Explore			×
pdd_Miskinn pdd_Miskinn AHH Inflasi Studentized Deleted F LnPdd_Miskin LnAHH Unstandardized Resid Studentized Deleted F	•	Dependent List:	OK Paste Reset Cancel Help
	\rightarrow	Label Cases by:	
Display Both O Statistics O	Plots	Statistics Plots Optic	ons
	C	10.2	

Gambar 8.2

2. Output yang muncul adalah seperti pada gambar dibawah ini, Sesuai kriteria, dapat disimpulkan bahwa residual menyebar normal

Tests of Normality

	Kolm	nogorov-Smir	nov ^a	Shapiro-Wilk				
	Statistic	df	Sig	Statistic	df	Sig		
Unstandardized Residual	,116	36	,200*	,957	36	,170		
* This is a lower bound of the true significance								

a Lilliefors Significance Correction

Test normality dapat dilihat dari nilai sig

jika nilai sig lebih besar dari 5% maka dapat disimpulkan bahwa residual menyebar normal, dan jika nilai sig lebih kecil dari 5% maka dapat disimpulkan bahwa residual menyebar tidak normal

Dari hasil test of normality diketahui nilai statistik 0,116 atau nilai sig 0,20 atau 20% lebih besar dari nilai α 5%, sehingga maka dapat disimpulkan bahwa residual menyebar normal

b. Uji Autokorelasi

Uji autokorelasi digunakan untuk mengetahui ada atau tidaknya penyimpangan asumsi klasik autokorelasi yaitu korelasi yang terjadi antara residual pada satu pengamatan dengan pengamatan lain pada model regresi Prasyarat yang harus terpenuhi adalah tidak adanya autokorelasi dalam model regresi Metode pengujian yang sering digunakan adalah dengan uji Durbin-Watson (uji DW) dengan ketentuan sebagai berikut:

- 1. Jika d lebih kecil dari dL atau lebih besar dari (4-dL) maka hopotesis nol ditolak, yang berarti terdapat autokorelasi
- 2. Jika d terletak antara dU dan (4-dU), maka hipotesis nol diterima, yang berarti tidak ada autokorelasi
- 3. Jika d terletak antara dL dan dU atau diantara (4-dU) dan (4-dL), maka tidak menghasilkan kesimpulan yang pasti

Nilai du dan dl dapat diperoleh dari tabel statistik Durbin Watson yang bergantung banyaknya observasi dan banyaknya variabel yang menjelaskan

Sebagai contoh kasus kita mengambil contoh kasus pada uji normalitas pada pembahasan sebelumnya Pada contoh kasus tersebut setelah dilakukan uji normalitas, multikolinearitas, dan heteroskedastisitas maka selanjutnya akan dilakukan pengujian autokorelasi

Nilai Durbin Watson pada output dapat dilihat pada Gambar yaitu sebesar 1,641, Sedangkan nilai tabel pembanding berdasarkan data keuntungan dengan melihat pada Tabel dibawah ini, nilai <u> $d_{L,\alpha} = 1.153$ </u>, sedangkan nilai <u> $d_{U,\alpha} = 1.376$ </u>.

Nilai $\underline{d}_{U,\alpha}$ <dw <4- $\underline{d}_{U,\alpha}$ sehingga dapat disimpulkan bahwa **residual tidak** mengandung autokorelasi

Model	Summary ^b
-------	----------------------

			Adjusted	Std Error of	Durbin-	
Model	R	R Square	R Square	the Estimate	Watson	
1	,999 ^a	,999	,998	4186,51013		1,641

a. Predictors: (Constant), Promosi, Penjualan

b. Dependent Variable: Keuntungan

Model Dengan Ln

Model Summary^b

Madal	P	Dervere	Adjusted	Std Error of	Durbin-	
Model	ĸ	R Square	R Square	the Estimate	Watson	
1	,999 ^a	,999	,998	,01685	(1,812

a. Predictors: (Constant), InPromosi, InPenjualan

b. Dependent Variable: InKeuntungan

Nilai Durbin Watson **dalam model ln** pada output dapat dilihat pada Gambar yaitu sebesar 1,812, Sedangkan nilai tabel pembanding berdasarkan data keuntungan dengan melihat pada Tabel diatas, nilai <u> $\mathbf{d}_{\mathbf{L},\alpha} = 1,153$ </u>, sedangkan nilai <u> $\mathbf{d}_{\mathbf{U},\alpha} = 1,376$ </u>, Nilai <u> $\mathbf{d}_{\mathbf{U},\alpha} < \mathbf{d}_{\mathbf{W}} < 4$ -</u> $\mathbf{d}_{\mathbf{U},\alpha}$ sehingga dapat disimpulkan bahwa **residual tidak mengandung autokorelasi**

c. Uji Multikolinearitas

Multikolinearitas atau *Kolinearitas Ganda* (*Multicollinearity*) adalah adanya hubungan linear antara peubah bebas X dalam <u>Model Regresi Ganda</u> Jika hubungan linear antar peubah bebas X dalam Model Regresi Ganda adalah <u>korelasi</u> sempurna maka peubah-peubah tersebut berkolinearitas ganda sempurna (*perfect multicollinearity*) Sebagai ilustrasi, misalnya dalam menduga faktor-faktor yang memengaruhi konsumsi per tahun dari suatu rumah tangga, dengan model regresi ganda sebagai berikut :

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + E$

dimana :

X₁ : pendapatan per tahun dari rumah tangga

 X_2 : pendapatan per bulan dari rumah tangga

Peubah X_1 dan X_2 berkolinearitas sempurna karena $X_1 = 12X_2$ Jika kedua peubah ini dimasukkan ke dalam model regresi, akan timbul masalah

Kolinearitas Sempurna, yang tidak mungkin diperoleh pendugaan koefisien parameter regresinya

Jika tujuan pemodelan hanya untuk peramalan nilai Y (peubah respon) dan tidak mengkaji hubungan atau pengaruh antara peubah bebas (X) dengan peubah respon (Y) maka masalah multikolinearitas bukan masalah yang serius Seperti jika menggunakan Model ARIMA dalam peramalan, karena korelasi antara dua parameter selalu tinggi, meskipun melibatkan data sampel dengan jumlah yang besar Masalah multikolinearitas menjadi serius apabila digunakan unruk mengkaji hubungan antara peubah bebas (X) dengan peubah respon (Y) karena simpangan baku koefisiennya regresinya tidak siginifikan sehingga sulit memisahkan pengaruh dari masing-masing peubah bebas

Pendeteksian multikolinearitas dapat dilihat melalui nilai *Variance Inflation Factors* (VIF) pada table dibawah ini (model tanpa ln dan Model dengan Ln), Kriteria pengujiannya yaitu apabila nilai VIF < 10 maka tidak terdapat mutikolinearitas diantara variabel independent, dan sebaliknya, Pada **tabel** ditunjukkan nilai VIF seluruhnya > 10, sehingga **asumsi model tersebut mengandung multikolinieritas**

Coefficients ^a										
		Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics		
Model		В	Std Error	Beta	t	Sig	Tolerance	VIE		
1	(Constant)	-1587,875	2093,274		-,759	,453				
	Penjualan	,060	,009	,602	6,344	,000	,005	202,913		
	Promosi	,818,	,195	,398	4,191	,000	,005	202,913		

a. Dependent Variable: Keuntungan

Model Dengan Ln

				Coefficients				
		Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics
Model		В	Std Error	Beta	t	Sig	Tolerance	VIF
1	(Constant)	-1,420	,314		-4,527	,000		
	InPenjualan	,664	,111	,662	5,971	,000	,004	284,794
	InPromosi	,347	,114	,337	3,043	,005	,004	284,794
2 Dec	o o o do o ti \/o rio h l	a. In Kaunatun a						

a Dependent Variable: InKeuntungan

Cara mengatasi multikolinearitas

Beberapa cara yang bisa digunakan dalam mengatasi masalah multikolinearitas dalam Model Regresi Ganda antara lain, Analisis komponen utama yaitu analisis dengan mereduksi peubah bebas (X) tanpa mengubah karakteristik peubah-peubah bebasnya[[], penggabungan data *cross section* dan data *time series* sehingga terbentuk data panel, metode regresi step wise,

metode best subset, metode backward elimination, metode forward selection, mengeluarkan peubah variabel dengan korelasi tinggi walaupun dapat menimbulkan kesalahan spesifikasi, menambah jumlah data sampel, dan lainlain

d. Uji Heteroskedastisitas

Heteroskedastisitas adalah adanya ketidaksamaan varian dari residual untuk semua pengamatan pada model regresi

Mengapa dilakukan uji heteroskedastitas? jawabannya adalah untuk mengetahui adanya penyimpangan dari syarat-syarat **asumsi klasik** pada **model regresi**, di mana dalam model regresi harus dipenuhi syarat tidak adanya heteroskedastisitas

Uji heteroskedastisitas dilakukan dengan cara meregresikan nilai absolute residual dengan variabel – variabel independent dalam model, Langkahlangkahnya adalah:

1) Pilih **Transform → Compute Variable**

Compute Variable

2) Pilih **All** pada **Function Group** kemudian pilih **Abs** pada **Functions and Special Variables** dengan cara melakukan double klik, Selanjutnya ketik

Abs_Res pada **Target Variable** dan masukkan **Unstandardized Residual_1** pada **Numeric Expression**, → OK

- 3) Outputnya adalah berupa variabel baru pada Data View,
- 4) Next, pilih Analyze → Regression → Linear→ Masukkan Abs_Res sebagai dependent Variable Sedangkan variabel Penjualan dan Promosi sebagai variabel independent

💷 Linear Regression		×
 Periode Keuntungan Penjualan Promosi Unstandardized Residi Studentized Deleted F InKeuntungan InPenjualan InPromosi Unstandardized Residi Studentized Deleted F 	Dependent: Abs_Resid Block 1 of 1 Previous Independent(s): Penjualan Promosi Method: Enter	OK Paste Reset Cancel Help
Unstandardized Residi	Selection Variable: Rule Case Labels: WLS Weight:	
	Statistics Plots Save Optio	ns

Linear Regression untuk Uji Glejser

5) Pilih Estimates dan Model Fit pada Menu Statistics → Continue → OK

Linear Regression: Sta	tistics	×
Regression Coefficients Estimates Confidence intervals Covariance matrix	Model fit R squared change Descriptives Rart and partial correlations Collinearity diagnostics	Continue Cancel Help
Residuals		
Durbin-Watson		
Casewise diagnostics		
 Outliers outside: All cases 	3 standard deviations	

Statistics Uji Glejser

6) Perhatikan output regresi antara Residual dengan Variabel-variabel independent lainnya seperti terlihat pada table koefisien dibawah ini, Output menunjukkan tidak adanya hubungan yang signifikan antara seluruh variabel independent terhadap nilai absolute residual, sehingga dapat disimpulkan bahwa **asumsi non-heteroskedastisitas terpenuhi**

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients				
Model		В	Std Error	Beta	t		Sig	
1	(Constant)	1215,233	1335,265		,910		,369	
	Penjualan	,004	,006	1,494	,631		,532	
	Promosi	-,064	,124	-1,212	-,512		,612	
a. Dependent Variable: Abs_Resid								

Gambar 8.3 Output uji Glejser

- Agus Tri Basuki dan Nano Prawoto, Pengantar Statistik Untuk Ekonomi dan Bisnis, Penerbit Danisa Media, Yogyakarta 2014
- Agus Widarjono, Ekonometrika Teori dan Aplikasi untuk Ekonomi dan Bisnis, Edisi Kedua, Cetakan Kesatu, Penerbit Ekonisia Fakultas Ekonomi UII Yogyakarta 2007
- Budiyuwono, Nugroho, Pengantar Statistik Ekonomi & Perusahaan, Jilid 2, Edisi Pertama, UPP AMP YKPN, Yogyakarta, 1996
- Barrow, Mike *Statistics of Economics: Accounting and Business Studies* 3rd edition Upper Saddle River, NJ: Prentice-Hall, 2001
- Dajan, Anto *Pengantar Metode Statistik* Jakarta: Penerbit LP3ES, 1974 Santoso, Singgih. *Panduan lengkap SPSS versi 23*. Elex Media Komputindo, 2016.

AGUS TRI BASUKI adalah Dosen Fakultas Ekonomi di Universitas Muhammadiyah Yogyakarta sejak tahun 1994 Mengajar Mata Kuliah Statistik, Ekonometrik, Matematika Ekonomi dan Pengantar Teori Ekonomi S1 diselesaikan di Program Studi Ekonomi Pembangunan Universitas Gadjah Mada Yogyakarta tahun 1993, kemudian pada tahun 2020 penulis menyelesaikan Doktor Ilmu Ekonomi di Universitas Sebelas Maret Surakarta

Penulis selain mengajar di Universitas Muhammadiyah Iogyakarta juga mengajar diberbagai Universitas di Yogyakarta Selain sebagai dosen, penulis juga menjadi konsultan di berbagai daerah di Indonesia